Tianyi Zhang
		
	commited on
		
		
					Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,199 +1,67 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            library_name: transformers
         | 
| 3 | 
            -
             | 
|  | |
|  | |
| 4 | 
             
            ---
         | 
| 5 |  | 
| 6 | 
            -
            #  | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
            - ** | 
| 24 | 
            -
            - | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
             | 
| 60 | 
            -
             | 
| 61 | 
            -
             | 
| 62 | 
            -
             | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
             | 
| 66 | 
            -
            <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
         | 
| 67 | 
            -
             | 
| 68 | 
            -
            Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
         | 
| 69 | 
            -
             | 
| 70 | 
            -
            ## How to Get Started with the Model
         | 
| 71 | 
            -
             | 
| 72 | 
            -
            Use the code below to get started with the model.
         | 
| 73 | 
            -
             | 
| 74 | 
            -
            [More Information Needed]
         | 
| 75 | 
            -
             | 
| 76 | 
            -
            ## Training Details
         | 
| 77 | 
            -
             | 
| 78 | 
            -
            ### Training Data
         | 
| 79 | 
            -
             | 
| 80 | 
            -
            <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
         | 
| 81 | 
            -
             | 
| 82 | 
            -
            [More Information Needed]
         | 
| 83 | 
            -
             | 
| 84 | 
            -
            ### Training Procedure
         | 
| 85 | 
            -
             | 
| 86 | 
            -
            <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
         | 
| 87 | 
            -
             | 
| 88 | 
            -
            #### Preprocessing [optional]
         | 
| 89 | 
            -
             | 
| 90 | 
            -
            [More Information Needed]
         | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
            #### Training Hyperparameters
         | 
| 94 | 
            -
             | 
| 95 | 
            -
            - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
         | 
| 96 | 
            -
             | 
| 97 | 
            -
            #### Speeds, Sizes, Times [optional]
         | 
| 98 | 
            -
             | 
| 99 | 
            -
            <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
         | 
| 100 | 
            -
             | 
| 101 | 
            -
            [More Information Needed]
         | 
| 102 | 
            -
             | 
| 103 | 
            -
            ## Evaluation
         | 
| 104 | 
            -
             | 
| 105 | 
            -
            <!-- This section describes the evaluation protocols and provides the results. -->
         | 
| 106 | 
            -
             | 
| 107 | 
            -
            ### Testing Data, Factors & Metrics
         | 
| 108 | 
            -
             | 
| 109 | 
            -
            #### Testing Data
         | 
| 110 | 
            -
             | 
| 111 | 
            -
            <!-- This should link to a Dataset Card if possible. -->
         | 
| 112 | 
            -
             | 
| 113 | 
            -
            [More Information Needed]
         | 
| 114 | 
            -
             | 
| 115 | 
            -
            #### Factors
         | 
| 116 | 
            -
             | 
| 117 | 
            -
            <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
         | 
| 118 | 
            -
             | 
| 119 | 
            -
            [More Information Needed]
         | 
| 120 | 
            -
             | 
| 121 | 
            -
            #### Metrics
         | 
| 122 | 
            -
             | 
| 123 | 
            -
            <!-- These are the evaluation metrics being used, ideally with a description of why. -->
         | 
| 124 | 
            -
             | 
| 125 | 
            -
            [More Information Needed]
         | 
| 126 | 
            -
             | 
| 127 | 
            -
            ### Results
         | 
| 128 | 
            -
             | 
| 129 | 
            -
            [More Information Needed]
         | 
| 130 | 
            -
             | 
| 131 | 
            -
            #### Summary
         | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
            ## Model Examination [optional]
         | 
| 136 | 
            -
             | 
| 137 | 
            -
            <!-- Relevant interpretability work for the model goes here -->
         | 
| 138 | 
            -
             | 
| 139 | 
            -
            [More Information Needed]
         | 
| 140 | 
            -
             | 
| 141 | 
            -
            ## Environmental Impact
         | 
| 142 | 
            -
             | 
| 143 | 
            -
            <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
         | 
| 144 | 
            -
             | 
| 145 | 
            -
            Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
         | 
| 146 | 
            -
             | 
| 147 | 
            -
            - **Hardware Type:** [More Information Needed]
         | 
| 148 | 
            -
            - **Hours used:** [More Information Needed]
         | 
| 149 | 
            -
            - **Cloud Provider:** [More Information Needed]
         | 
| 150 | 
            -
            - **Compute Region:** [More Information Needed]
         | 
| 151 | 
            -
            - **Carbon Emitted:** [More Information Needed]
         | 
| 152 | 
            -
             | 
| 153 | 
            -
            ## Technical Specifications [optional]
         | 
| 154 | 
            -
             | 
| 155 | 
            -
            ### Model Architecture and Objective
         | 
| 156 | 
            -
             | 
| 157 | 
            -
            [More Information Needed]
         | 
| 158 | 
            -
             | 
| 159 | 
            -
            ### Compute Infrastructure
         | 
| 160 | 
            -
             | 
| 161 | 
            -
            [More Information Needed]
         | 
| 162 | 
            -
             | 
| 163 | 
            -
            #### Hardware
         | 
| 164 | 
            -
             | 
| 165 | 
            -
            [More Information Needed]
         | 
| 166 | 
            -
             | 
| 167 | 
            -
            #### Software
         | 
| 168 | 
            -
             | 
| 169 | 
            -
            [More Information Needed]
         | 
| 170 | 
            -
             | 
| 171 | 
            -
            ## Citation [optional]
         | 
| 172 | 
            -
             | 
| 173 | 
            -
            <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
         | 
| 174 | 
            -
             | 
| 175 | 
            -
            **BibTeX:**
         | 
| 176 | 
            -
             | 
| 177 | 
            -
            [More Information Needed]
         | 
| 178 | 
            -
             | 
| 179 | 
            -
            **APA:**
         | 
| 180 | 
            -
             | 
| 181 | 
            -
            [More Information Needed]
         | 
| 182 | 
            -
             | 
| 183 | 
            -
            ## Glossary [optional]
         | 
| 184 | 
            -
             | 
| 185 | 
            -
            <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
         | 
| 186 | 
            -
             | 
| 187 | 
            -
            [More Information Needed]
         | 
| 188 | 
            -
             | 
| 189 | 
            -
            ## More Information [optional]
         | 
| 190 | 
            -
             | 
| 191 | 
            -
            [More Information Needed]
         | 
| 192 | 
            -
             | 
| 193 | 
            -
            ## Model Card Authors [optional]
         | 
| 194 | 
            -
             | 
| 195 | 
            -
            [More Information Needed]
         | 
| 196 | 
            -
             | 
| 197 | 
            -
            ## Model Card Contact
         | 
| 198 | 
            -
             | 
| 199 | 
            -
            [More Information Needed]
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            library_name: transformers
         | 
| 3 | 
            +
            license: llama3.1
         | 
| 4 | 
            +
            base_model:
         | 
| 5 | 
            +
            - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
         | 
| 6 | 
             
            ---
         | 
| 7 |  | 
| 8 | 
            +
            # This model has been xMADified!
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            This repository contains [`nvidia/Llama-3.1-Nemotron-70B-Instruct-HF`](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # Why should I use this model?
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            1. **Accuracy:** This xMADified model is the **best quantized** version of the [`nvidia/Llama-3.1-Nemotron-70B-Instruct-HF`](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) model (40 GB only). See _Table 1_ below for model quality benchmarks.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            2. **Memory-efficiency:** The full-precision model is around 140 GB, while this xMADified model is under 40 GB, making it feasible to run on a single 48 GB GPU.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            3. **Fine-tuning**:  These models are fine-tunable over the same reduced (a single 48 GB GPU) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            ## Table 1: xMAD vs. Unsloth
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            | Model | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | MMLU STEM | MMLU Humanities | MMLU Social Sciences | MMLU Other |
         | 
| 24 | 
            +
            |---|---|---|---|---|---|---|---|---|
         | 
| 25 | 
            +
            | [xmadai/Llama-3.1-Nemotron-70B-Instruct-xMADai-INT4](https://huggingface.co/xmadai/Llama-3.1-Nemotron-70B-Instruct-xMADai-INT4) (this model) | **63.05** | **86.36** | **71.96** | **75.82** | **75.55** | **80.62** | **87.42** | **83.71** |
         | 
| 26 | 
            +
            | [unsloth/Llama-3.1-Nemotron-70B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.1-Nemotron-70B-Instruct-bnb-4bit) | 60.32 | 85.35 | 71.01 | 74.64 | 75.1 | 80.06 | 87.33 | 83.71 |
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            # How to Run Model
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            Loading the model checkpoint of this xMADified model requires around 40 GB of VRAM. Hence it can be efficiently run on a single 48 GB GPU.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            **Package prerequisites**:
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            1. Run the following *commands to install the required packages.
         | 
| 36 | 
            +
            ```bash
         | 
| 37 | 
            +
            pip install torch==2.4.0  # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
         | 
| 38 | 
            +
            pip install transformers accelerate optimum
         | 
| 39 | 
            +
            pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
         | 
| 40 | 
            +
            ```
         | 
| 41 | 
            +
            **Sample Inference Code**
         | 
| 42 | 
            +
            ```python
         | 
| 43 | 
            +
            from transformers import AutoTokenizer
         | 
| 44 | 
            +
            from auto_gptq import AutoGPTQForCausalLM
         | 
| 45 | 
            +
            model_id = "xmadai/Llama-3.1-Nemotron-70B-Instruct-xMADai-INT4"
         | 
| 46 | 
            +
            prompt = [
         | 
| 47 | 
            +
                {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
         | 
| 48 | 
            +
                {"role": "user", "content": "What's Deep Learning?"},
         | 
| 49 | 
            +
            ]
         | 
| 50 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
         | 
| 51 | 
            +
            inputs = tokenizer.apply_chat_template(
         | 
| 52 | 
            +
                prompt,
         | 
| 53 | 
            +
                tokenize=True,
         | 
| 54 | 
            +
                add_generation_prompt=True,
         | 
| 55 | 
            +
                return_tensors="pt",
         | 
| 56 | 
            +
                return_dict=True,
         | 
| 57 | 
            +
            ).to("cuda")
         | 
| 58 | 
            +
            model = AutoGPTQForCausalLM.from_quantized(
         | 
| 59 | 
            +
                model_id,
         | 
| 60 | 
            +
                device_map='auto',
         | 
| 61 | 
            +
                trust_remote_code=True,
         | 
| 62 | 
            +
            )
         | 
| 63 | 
            +
            outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
         | 
| 64 | 
            +
            print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
         | 
| 65 | 
            +
            ```
         | 
| 66 | 
            +
            # Contact Us
         | 
| 67 | 
            +
            For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
