Text Generation
Transformers
Safetensors
English
ddllama
conversational
custom_code
File size: 2,552 Bytes
305a7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import transformers
from transformers import TextStreamer
import torch
from transformers.generation.streamers import BaseStreamer
from datasets import load_dataset
import random

class TokenStreamer(BaseStreamer):
    """
    Simple token streamer that prints each token surrounded by brackets as soon as it's generated.
    
    Parameters:
        tokenizer (`AutoTokenizer`):
            The tokenizer used to decode the tokens.
        skip_prompt (`bool`, *optional*, defaults to `False`):
            Whether to skip the prompt tokens in the output. Useful for chatbots.
    """

    def __init__(self, tokenizer, skip_prompt=True):
        self.tokenizer = tokenizer
        self.skip_prompt = skip_prompt
        self.next_tokens_are_prompt = True

    def put(self, value):
        if len(value.shape) > 1 and value.shape[0] > 1:
            raise ValueError("TokenStreamer only supports batch size 1")
        elif len(value.shape) > 1:
            value = value[0]

        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
            return

        for token_id in value.tolist():
            token_text = self.tokenizer.decode([token_id])
            print(f"={repr(token_text)}", end="\n", flush=True)

    def end(self):
        self.next_tokens_are_prompt = True
        print()

model_id = "../"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
    trust_remote_code=True
)


dataset = load_dataset("EdinburghNLP/xsum", split="test")


random.seed(0)
sampled_indices = random.sample(range(len(dataset)), 100)
sampled_dataset = dataset.select(sampled_indices)


streamer = TokenStreamer(tokenizer)
for sample in sampled_dataset:
    document = sample["document"]
    prompt = "Please copy this paragraph: <paragraph>" + document + "</paragraph> Directly output the copied paragraph here: "
    
    messages = [
        {"role": "user", "content": prompt}
    ]
    
    print("===")
    outputs = pipeline(
        messages,
        max_new_tokens=64,
        do_sample=True,
        temperature=0.6,
        top_p=1.0,
        streamer=streamer,
    )
    print("===")