|  | """Tokenization classes for ChatGLM.""" | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | from transformers.tokenization_utils import PreTrainedTokenizer | 
					
						
						|  | from transformers.utils import logging, PaddingStrategy | 
					
						
						|  | from transformers.tokenization_utils_base import EncodedInput, BatchEncoding | 
					
						
						|  | from typing import Dict | 
					
						
						|  | import sentencepiece as spm | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | 
					
						
						|  | "THUDM/chatglm-6b": 2048, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TextTokenizer: | 
					
						
						|  | def __init__(self, model_path): | 
					
						
						|  | self.sp = spm.SentencePieceProcessor() | 
					
						
						|  | self.sp.Load(model_path) | 
					
						
						|  | self.num_tokens = self.sp.vocab_size() | 
					
						
						|  |  | 
					
						
						|  | def encode(self, text): | 
					
						
						|  | return self.sp.EncodeAsIds(text) | 
					
						
						|  |  | 
					
						
						|  | def decode(self, ids: List[int]): | 
					
						
						|  | return self.sp.DecodeIds(ids) | 
					
						
						|  |  | 
					
						
						|  | def tokenize(self, text): | 
					
						
						|  | return self.sp.EncodeAsPieces(text) | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens): | 
					
						
						|  | return self.sp.DecodePieces(tokens) | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_ids(self, tokens): | 
					
						
						|  | return [self.sp.PieceToId(token) for token in tokens] | 
					
						
						|  |  | 
					
						
						|  | def convert_token_to_id(self, token): | 
					
						
						|  | return self.sp.PieceToId(token) | 
					
						
						|  |  | 
					
						
						|  | def convert_id_to_token(self, idx): | 
					
						
						|  | return self.sp.IdToPiece(idx) | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self.num_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SPTokenizer: | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file, | 
					
						
						|  | num_image_tokens=20000, | 
					
						
						|  | max_blank_length=80, | 
					
						
						|  | byte_fallback=True, | 
					
						
						|  | ): | 
					
						
						|  | assert vocab_file is not None | 
					
						
						|  | self.vocab_file = vocab_file | 
					
						
						|  | self.num_image_tokens = num_image_tokens | 
					
						
						|  | self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"] | 
					
						
						|  | self.max_blank_length = max_blank_length | 
					
						
						|  | self.byte_fallback = byte_fallback | 
					
						
						|  | self.text_tokenizer = TextTokenizer(vocab_file) | 
					
						
						|  |  | 
					
						
						|  | def _get_text_tokenizer(self): | 
					
						
						|  | return self.text_tokenizer | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def get_blank_token(length: int): | 
					
						
						|  | assert length >= 2 | 
					
						
						|  | return f"<|blank_{length}|>" | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def get_tab_token(): | 
					
						
						|  | return f"<|tab|>" | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_text_tokens(self): | 
					
						
						|  | return self.text_tokenizer.num_tokens | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_tokens(self): | 
					
						
						|  | return self.num_image_tokens + self.num_text_tokens | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _encode_whitespaces(text: str, max_len: int = 80): | 
					
						
						|  | text = text.replace("\t", SPTokenizer.get_tab_token()) | 
					
						
						|  | for i in range(max_len, 1, -1): | 
					
						
						|  | text = text.replace(" " * i, SPTokenizer.get_blank_token(i)) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def _preprocess(self, text: str, linebreak=True, whitespaces=True): | 
					
						
						|  | if linebreak: | 
					
						
						|  | text = text.replace("\n", "<n>") | 
					
						
						|  | if whitespaces: | 
					
						
						|  | text = self._encode_whitespaces(text, max_len=self.max_blank_length) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def encode( | 
					
						
						|  | self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | @param text: Text to encode. | 
					
						
						|  | @param linebreak: Whether to encode newline (\n) in text. | 
					
						
						|  | @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. | 
					
						
						|  | @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. | 
					
						
						|  | @param add_dummy_prefix: Whether to add dummy blank space in the beginning. | 
					
						
						|  | """ | 
					
						
						|  | text = self._preprocess(text, linebreak, whitespaces) | 
					
						
						|  | if not add_dummy_prefix: | 
					
						
						|  | text = "<n>" + text | 
					
						
						|  | tmp = self._get_text_tokenizer().encode(text) | 
					
						
						|  | tokens = [x + self.num_image_tokens for x in tmp] | 
					
						
						|  | return tokens if add_dummy_prefix else tokens[2:] | 
					
						
						|  |  | 
					
						
						|  | def postprocess(self, text): | 
					
						
						|  | text = text.replace("<n>", "\n") | 
					
						
						|  | text = text.replace(SPTokenizer.get_tab_token(), "\t") | 
					
						
						|  | for i in range(2, self.max_blank_length + 1): | 
					
						
						|  | text = text.replace(self.get_blank_token(i), " " * i) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def decode(self, text_ids: List[int]) -> str: | 
					
						
						|  | ids = [int(_id) - self.num_image_tokens for _id in text_ids] | 
					
						
						|  | ids = [_id for _id in ids if _id >= 0] | 
					
						
						|  | text = self._get_text_tokenizer().decode(ids) | 
					
						
						|  | text = self.postprocess(text) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def decode_tokens(self, tokens: List[str]) -> str: | 
					
						
						|  | text = self._get_text_tokenizer().convert_tokens_to_string(tokens) | 
					
						
						|  | text = self.postprocess(text) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def tokenize( | 
					
						
						|  | self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True | 
					
						
						|  | ) -> List[str]: | 
					
						
						|  | """ | 
					
						
						|  | @param text: Text to encode. | 
					
						
						|  | @param linebreak: Whether to encode newline (\n) in text. | 
					
						
						|  | @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. | 
					
						
						|  | @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. | 
					
						
						|  | @param add_dummy_prefix: Whether to add dummy blank space in the beginning. | 
					
						
						|  | """ | 
					
						
						|  | text = self._preprocess(text, linebreak, whitespaces) | 
					
						
						|  | if not add_dummy_prefix: | 
					
						
						|  | text = "<n>" + text | 
					
						
						|  | tokens = self._get_text_tokenizer().tokenize(text) | 
					
						
						|  | return tokens if add_dummy_prefix else tokens[2:] | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, x: Union[int, str]): | 
					
						
						|  | if isinstance(x, int): | 
					
						
						|  | if x < self.num_image_tokens: | 
					
						
						|  | return "<image_{}>".format(x) | 
					
						
						|  | else: | 
					
						
						|  | return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens) | 
					
						
						|  | elif isinstance(x, str): | 
					
						
						|  | if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit(): | 
					
						
						|  | return int(x[7:-1]) | 
					
						
						|  | else: | 
					
						
						|  | return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("The key should be str or int.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLMTokenizer(PreTrainedTokenizer): | 
					
						
						|  | """ | 
					
						
						|  | Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_file (`str`): | 
					
						
						|  | Path to the vocabulary file. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | vocab_files_names = {"vocab_file": "ice_text.model"} | 
					
						
						|  | max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask", "position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file, | 
					
						
						|  | do_lower_case=False, | 
					
						
						|  | remove_space=False, | 
					
						
						|  | bos_token='<sop>', | 
					
						
						|  | eos_token='<eop>', | 
					
						
						|  | end_token='</s>', | 
					
						
						|  | mask_token='[MASK]', | 
					
						
						|  | gmask_token='[gMASK]', | 
					
						
						|  | padding_side="left", | 
					
						
						|  | pad_token="<pad>", | 
					
						
						|  | unk_token="<unk>", | 
					
						
						|  | num_image_tokens=20000, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__( | 
					
						
						|  | do_lower_case=do_lower_case, | 
					
						
						|  | remove_space=remove_space, | 
					
						
						|  | padding_side=padding_side, | 
					
						
						|  | bos_token=bos_token, | 
					
						
						|  | eos_token=eos_token, | 
					
						
						|  | end_token=end_token, | 
					
						
						|  | mask_token=mask_token, | 
					
						
						|  | gmask_token=gmask_token, | 
					
						
						|  | pad_token=pad_token, | 
					
						
						|  | unk_token=unk_token, | 
					
						
						|  | num_image_tokens=num_image_tokens, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.do_lower_case = do_lower_case | 
					
						
						|  | self.remove_space = remove_space | 
					
						
						|  | self.vocab_file = vocab_file | 
					
						
						|  |  | 
					
						
						|  | self.bos_token = bos_token | 
					
						
						|  | self.eos_token = eos_token | 
					
						
						|  | self.end_token = end_token | 
					
						
						|  | self.mask_token = mask_token | 
					
						
						|  | self.gmask_token = gmask_token | 
					
						
						|  |  | 
					
						
						|  | self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens) | 
					
						
						|  |  | 
					
						
						|  | """ Initialisation """ | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def gmask_token_id(self) -> Optional[int]: | 
					
						
						|  | if self.gmask_token is None: | 
					
						
						|  | return None | 
					
						
						|  | return self.convert_tokens_to_ids(self.gmask_token) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def end_token_id(self) -> Optional[int]: | 
					
						
						|  | """ | 
					
						
						|  | `Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been | 
					
						
						|  | set. | 
					
						
						|  | """ | 
					
						
						|  | if self.end_token is None: | 
					
						
						|  | return None | 
					
						
						|  | return self.convert_tokens_to_ids(self.end_token) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | """ Returns vocab size """ | 
					
						
						|  | return self.sp_tokenizer.num_tokens | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | """ Returns vocab as a dict """ | 
					
						
						|  | vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | 
					
						
						|  | vocab.update(self.added_tokens_encoder) | 
					
						
						|  | return vocab | 
					
						
						|  |  | 
					
						
						|  | def preprocess_text(self, inputs): | 
					
						
						|  | if self.remove_space: | 
					
						
						|  | outputs = " ".join(inputs.strip().split()) | 
					
						
						|  | else: | 
					
						
						|  | outputs = inputs | 
					
						
						|  |  | 
					
						
						|  | if self.do_lower_case: | 
					
						
						|  | outputs = outputs.lower() | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text, **kwargs): | 
					
						
						|  | """ Returns a tokenized string. """ | 
					
						
						|  | text = self.preprocess_text(text) | 
					
						
						|  |  | 
					
						
						|  | seq = self.sp_tokenizer.tokenize(text) | 
					
						
						|  |  | 
					
						
						|  | return seq | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens: List[str]) -> str: | 
					
						
						|  | return self.sp_tokenizer.decode_tokens(tokens) | 
					
						
						|  |  | 
					
						
						|  | def _decode( | 
					
						
						|  | self, | 
					
						
						|  | token_ids: Union[int, List[int]], | 
					
						
						|  | **kwargs | 
					
						
						|  | ) -> str: | 
					
						
						|  | if isinstance(token_ids, int): | 
					
						
						|  | token_ids = [token_ids] | 
					
						
						|  | if len(token_ids) == 0: | 
					
						
						|  | return "" | 
					
						
						|  | if self.pad_token_id in token_ids: | 
					
						
						|  | token_ids = list(filter((self.pad_token_id).__ne__, token_ids)) | 
					
						
						|  | return super()._decode(token_ids, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | """ Converts a token (str) in an id using the vocab. """ | 
					
						
						|  | return self.sp_tokenizer[token] | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | return self.sp_tokenizer[index] | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory, filename_prefix=None): | 
					
						
						|  | """ | 
					
						
						|  | Save the vocabulary and special tokens file to a directory. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | save_directory (`str`): | 
					
						
						|  | The directory in which to save the vocabulary. | 
					
						
						|  | filename_prefix (`str`, *optional*): | 
					
						
						|  | An optional prefix to add to the named of the saved files. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple(str)`: Paths to the files saved. | 
					
						
						|  | """ | 
					
						
						|  | if os.path.isdir(save_directory): | 
					
						
						|  | vocab_file = os.path.join( | 
					
						
						|  | save_directory, self.vocab_files_names["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | vocab_file = save_directory | 
					
						
						|  |  | 
					
						
						|  | with open(self.vocab_file, 'rb') as fin: | 
					
						
						|  | proto_str = fin.read() | 
					
						
						|  |  | 
					
						
						|  | with open(vocab_file, "wb") as writer: | 
					
						
						|  | writer.write(proto_str) | 
					
						
						|  |  | 
					
						
						|  | return (vocab_file,) | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
						
						|  | adding special tokens. A BERT sequence has the following format: | 
					
						
						|  |  | 
					
						
						|  | - single sequence: `[CLS] X [SEP]` | 
					
						
						|  | - pair of sequences: `[CLS] A [SEP] B [SEP]` | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs to which the special tokens will be added. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | 
					
						
						|  | """ | 
					
						
						|  | gmask_id = self.sp_tokenizer[self.gmask_token] | 
					
						
						|  | eos_id = self.sp_tokenizer[self.eos_token] | 
					
						
						|  | token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]] | 
					
						
						|  | if token_ids_1 is not None: | 
					
						
						|  | token_ids_0 = token_ids_0 + token_ids_1 + [eos_id] | 
					
						
						|  | return token_ids_0 | 
					
						
						|  |  | 
					
						
						|  | def _pad( | 
					
						
						|  | self, | 
					
						
						|  | encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | 
					
						
						|  | pad_to_multiple_of: Optional[int] = None, | 
					
						
						|  | return_attention_mask: Optional[bool] = None, | 
					
						
						|  | ) -> dict: | 
					
						
						|  | """ | 
					
						
						|  | Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | encoded_inputs: | 
					
						
						|  | Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | 
					
						
						|  | max_length: maximum length of the returned list and optionally padding length (see below). | 
					
						
						|  | Will truncate by taking into account the special tokens. | 
					
						
						|  | padding_strategy: PaddingStrategy to use for padding. | 
					
						
						|  |  | 
					
						
						|  | - PaddingStrategy.LONGEST Pad to the longest sequence in the batch | 
					
						
						|  | - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | 
					
						
						|  | - PaddingStrategy.DO_NOT_PAD: Do not pad | 
					
						
						|  | The tokenizer padding sides are defined in self.padding_side: | 
					
						
						|  |  | 
					
						
						|  | - 'left': pads on the left of the sequences | 
					
						
						|  | - 'right': pads on the right of the sequences | 
					
						
						|  | pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | 
					
						
						|  | This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | 
					
						
						|  | `>= 7.5` (Volta). | 
					
						
						|  | return_attention_mask: | 
					
						
						|  | (optional) Set to False to avoid returning attention mask (default: set to model specifics) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | bos_token_id = self.sp_tokenizer[self.bos_token] | 
					
						
						|  | mask_token_id = self.sp_tokenizer[self.mask_token] | 
					
						
						|  | gmask_token_id = self.sp_tokenizer[self.gmask_token] | 
					
						
						|  | assert self.padding_side == "left" | 
					
						
						|  |  | 
					
						
						|  | required_input = encoded_inputs[self.model_input_names[0]] | 
					
						
						|  | seq_length = len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if padding_strategy == PaddingStrategy.LONGEST: | 
					
						
						|  | max_length = len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | 
					
						
						|  | max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | 
					
						
						|  |  | 
					
						
						|  | needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None: | 
					
						
						|  | if "attention_mask" not in encoded_inputs: | 
					
						
						|  | if bos_token_id in required_input: | 
					
						
						|  | context_length = required_input.index(bos_token_id) | 
					
						
						|  | else: | 
					
						
						|  | context_length = seq_length | 
					
						
						|  | attention_mask = np.ones((1, seq_length, seq_length)) | 
					
						
						|  | attention_mask = np.tril(attention_mask) | 
					
						
						|  | attention_mask[:, :, :context_length] = 1 | 
					
						
						|  | attention_mask = np.bool_(attention_mask < 0.5) | 
					
						
						|  | encoded_inputs["attention_mask"] = attention_mask | 
					
						
						|  |  | 
					
						
						|  | if "position_ids" not in encoded_inputs: | 
					
						
						|  | if bos_token_id in required_input: | 
					
						
						|  | context_length = required_input.index(bos_token_id) | 
					
						
						|  | else: | 
					
						
						|  | context_length = seq_length | 
					
						
						|  | position_ids = np.arange(seq_length, dtype=np.int64) | 
					
						
						|  | mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id | 
					
						
						|  | if mask_token in required_input: | 
					
						
						|  | mask_position = required_input.index(mask_token) | 
					
						
						|  | position_ids[context_length:] = mask_position | 
					
						
						|  | block_position_ids = np.concatenate( | 
					
						
						|  | [np.zeros(context_length, dtype=np.int64), | 
					
						
						|  | np.arange(1, seq_length - context_length + 1, dtype=np.int64)]) | 
					
						
						|  | encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0) | 
					
						
						|  |  | 
					
						
						|  | if needs_to_be_padded: | 
					
						
						|  | difference = max_length - len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if "attention_mask" in encoded_inputs: | 
					
						
						|  | encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"], | 
					
						
						|  | pad_width=[(0, 0), (difference, 0), (difference, 0)], | 
					
						
						|  | mode='constant', constant_values=True) | 
					
						
						|  | if "token_type_ids" in encoded_inputs: | 
					
						
						|  | encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ | 
					
						
						|  | "token_type_ids" | 
					
						
						|  | ] | 
					
						
						|  | if "special_tokens_mask" in encoded_inputs: | 
					
						
						|  | encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] | 
					
						
						|  | if "position_ids" in encoded_inputs: | 
					
						
						|  | encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"], | 
					
						
						|  | pad_width=[(0, 0), (difference, 0)]) | 
					
						
						|  | encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | 
					
						
						|  |  | 
					
						
						|  | return encoded_inputs | 
					
						
						|  |  |