|
import math |
|
from typing import ClassVar, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import BatchFeature |
|
|
|
from .processing_utils import BaseVisualRetrieverProcessor |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
from .conversation import get_conv_template |
|
from transformers import BatchFeature, ProcessorMixin |
|
|
|
def get_torch_device(device: str = "auto") -> str: |
|
""" |
|
Returns the device (string) to be used by PyTorch. |
|
|
|
`device` arg defaults to "auto" which will use: |
|
- "cuda:0" if available |
|
- else "mps" if available |
|
- else "cpu". |
|
""" |
|
|
|
if device == "auto": |
|
if torch.cuda.is_available(): |
|
device = "cuda:0" |
|
elif torch.backends.mps.is_available(): |
|
device = "mps" |
|
else: |
|
device = "cpu" |
|
return device |
|
|
|
class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin): |
|
""" |
|
Processor for ColInternVL2. |
|
""" |
|
attributes = [ "tokenizer"] |
|
image_processor_class = "InternVL2ImageProcessor" |
|
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") |
|
|
|
def __init__(self, tokenizer, **kwargs): |
|
self.template = "Hermes-2" |
|
self.num_image_token = 256 |
|
|
|
self.max_num = 4 |
|
|
|
if isinstance(tokenizer, str): |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True, use_fast=False) |
|
else: |
|
self.tokenizer = tokenizer |
|
|
|
self.tokenizer.padding_side = 'left' |
|
self.IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
self.IMAGENET_STD = (0.229, 0.224, 0.225) |
|
self.IMG_CONTEXT_TOKEN='<IMG_CONTEXT>' |
|
self.IMG_START_TOKEN='<img>' |
|
self.IMG_END_TOKEN='</img>' |
|
self.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.IMG_CONTEXT_TOKEN) |
|
|
|
self.system_message = '' |
|
super().__init__(tokenizer) |
|
|
|
|
|
|
|
|
|
def build_transform(self, input_size): |
|
MEAN, STD = self.IMAGENET_MEAN, self.IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = self.find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(self, image, input_size=448, max_num=12): |
|
transform = self.build_transform(input_size=input_size) |
|
images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=False, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
|
|
def process_images( |
|
self, |
|
images: List[Image.Image], |
|
max_length: int = 1100, |
|
padding="longest" |
|
) -> BatchFeature: |
|
""" |
|
Process images for InternVl2. |
|
""" |
|
|
|
pixel_values = [ self.load_image(image, max_num=self.max_num) for image in images] |
|
|
|
num_patches_list = [ pixel_.size(0) for pixel_ in pixel_values] |
|
image_flags = [ torch.tensor([1] * pixel_.shape[0], dtype=torch.long) for pixel_ in pixel_values ] |
|
|
|
queries = [] |
|
for idx, num_patches in enumerate(num_patches_list): |
|
question = "Image: <image>\nDescribe the image." |
|
|
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
image_tokens = self.IMG_START_TOKEN + self.IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + self.IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
queries.append(query) |
|
|
|
model_inputs = self.tokenizer(queries, return_tensors='pt', max_length=max_length, padding=padding, truncation=True) |
|
input_ids = model_inputs['input_ids'] |
|
attention_mask = model_inputs['attention_mask'] |
|
pixel_values = torch.cat(pixel_values) |
|
|
|
batch_doc = BatchFeature({ |
|
"pixel_values" : pixel_values, |
|
"input_ids" : input_ids, |
|
"attention_mask" : attention_mask, |
|
|
|
}) |
|
return batch_doc |
|
|
|
def process_docs( |
|
self, |
|
docs: List[str], |
|
max_length: int = 1100, |
|
suffix: Optional[str] = None, |
|
padding="longest" |
|
) -> BatchFeature: |
|
""" |
|
Process documents for InternVL2. |
|
""" |
|
|
|
texts_doc: List[str] = [] |
|
|
|
for doc in docs: |
|
doc = f"Document: {doc}\nDescribe the document." |
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
template.append_message(template.roles[0], doc) |
|
template.append_message(template.roles[1], None) |
|
doc = template.get_prompt() |
|
texts_doc.append(doc) |
|
|
|
model_inputs = self.tokenizer(texts_doc, return_tensors='pt', max_length=max_length, padding=padding, truncation=True) |
|
input_ids = model_inputs['input_ids'] |
|
attention_mask = model_inputs['attention_mask'] |
|
|
|
batch_doc = BatchFeature({ |
|
"pixel_values": None, |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
}) |
|
return batch_doc |
|
|
|
def process_queries( |
|
self, |
|
queries: List[str], |
|
max_length: int = 100, |
|
suffix: Optional[str] = None, |
|
) -> BatchFeature: |
|
""" |
|
Process queries for InternVl2. |
|
""" |
|
|
|
texts_query: List[str] = [] |
|
|
|
for query in queries: |
|
query = f"Query: {query}" |
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
template.append_message(template.roles[0], query) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
texts_query.append(query) |
|
|
|
model_inputs = self.tokenizer(texts_query, return_tensors='pt', max_length=max_length, padding="longest", truncation=True) |
|
input_ids = model_inputs['input_ids'] |
|
attention_mask = model_inputs['attention_mask'] |
|
|
|
batch_query = BatchFeature({ |
|
"pixel_values" : None, |
|
"input_ids" : input_ids, |
|
"attention_mask" : attention_mask, |
|
}) |
|
return batch_query |
|
|
|
def score( |
|
self, |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
device: Optional[Union[str, torch.device]] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. |
|
""" |
|
return self.score_multi_vector(qs, ps, device=device, **kwargs) |
|
|
|
def get_n_patches( |
|
self, |
|
image_size: Tuple[int, int], |
|
patch_size: int, |
|
) -> Tuple[int, int]: |
|
raise NotImplementedError("This method is not implemented for ColInternVL2.") |
|
|
|
def score_multi_vector( |
|
self, |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
batch_size: int = 128, |
|
device: Optional[Union[str, torch.device]] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. |
|
""" |
|
device = device or get_torch_device("auto") |
|
|
|
if len(qs) == 0: |
|
raise ValueError("No queries provided") |
|
if len(ps) == 0: |
|
raise ValueError("No passages provided") |
|
|
|
scores_list: List[torch.Tensor] = [] |
|
|
|
for i in range(0, len(qs), batch_size): |
|
scores_batch = [] |
|
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).float().to( |
|
device |
|
) |
|
for j in range(0, len(ps), batch_size): |
|
ps_batch = torch.nn.utils.rnn.pad_sequence( |
|
ps[j : j + batch_size], batch_first=True, padding_value=0 |
|
).float().to(device) |
|
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2)) |
|
scores_batch = torch.cat(scores_batch, dim=1).cpu() |
|
scores_list.append(scores_batch) |
|
|
|
scores = torch.cat(scores_list, dim=0) |
|
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" |
|
|
|
scores = scores.to(torch.float32) |
|
return scores |