|
--- |
|
tags: |
|
- biogpt |
|
- boolean-query |
|
- biomedical |
|
- systematic-review |
|
- pubmed |
|
license: unknown |
|
model-index: |
|
- name: BioGPT-BQF-Title-Small |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: CLEF TAR |
|
type: biomedical |
|
metrics: |
|
- name: Precision @100 |
|
type: precision |
|
value: 0.1410 |
|
- name: Recall @1000 |
|
type: recall |
|
value: 0.1825 |
|
--- |
|
|
|
# BioGPT-BQF-Title-Small |
|
Fine-tuned BioGPT for Biomedical Boolean Query Formalization using Titles only. |
|
|
|
## Model Details |
|
- Base Model: BioGPT |
|
- Fine-tuned on: Semi-synthetic generated data |
|
- Task: Boolean Query Generation for PubMed searches |
|
|
|
## How to Use |
|
```python |
|
from transformers import BioGptForCausalLM, BioGptTokenizer |
|
|
|
model = BioGptForCausalLM.from_pretrained("AI4BSLR/BioGPT-BQF-Title-Small") |
|
tokenizer = BioGptTokenizer.from_pretrained("AI4BSLR/BioGPT-BQF-Title-Small") |
|
|
|
input_text = "Title: Heterogeneity in Lung Cancer, Query: " |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|