|  | --- | 
					
						
						|  | tags: | 
					
						
						|  | - Code-Generation | 
					
						
						|  | - autotrain | 
					
						
						|  | - text-generation | 
					
						
						|  | - Llama2 | 
					
						
						|  | - Pytorch | 
					
						
						|  | - PEFT | 
					
						
						|  | - QLoRA | 
					
						
						|  | - code | 
					
						
						|  | - coding | 
					
						
						|  | pipeline_tag: text-generation | 
					
						
						|  | widget: | 
					
						
						|  | - text: Write a program that add five numbers | 
					
						
						|  | - text: Write a python code for reading multiple images | 
					
						
						|  | - text: Write a python code for the name Ahmed to be in a reversed order | 
					
						
						|  | datasets: | 
					
						
						|  | - AhmedSSoliman/CodeSearchNet | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # LlaMa2-CodeGen | 
					
						
						|  | This model is  [**LlaMa2-7b**](https://huggingface.co/meta-llama/Llama-2-7b) which is fine-tuned on the  [**CodeSearchNet dataset**](https://github.com/github/CodeSearchNet) by using the method  [**QLoRA**](https://github.com/artidoro/qlora) with [PEFT](https://github.com/huggingface/peft) library. | 
					
						
						|  |  | 
					
						
						|  | # Model Trained on Google Colab Pro Using AutoTrain, PEFT and QLoRA | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # You can load the LlaMa2-CodeGen model on google colab. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Example | 
					
						
						|  | ```py | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from peft import PeftModel, PeftConfig | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | 
					
						
						|  |  | 
					
						
						|  | peft_model_id = "AhmedSSoliman/Llama2-CodeGen-PEFT-QLoRA" | 
					
						
						|  | config = PeftConfig.from_pretrained(peft_model_id) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto') | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | 
					
						
						|  |  | 
					
						
						|  | # Load the Lora model | 
					
						
						|  | model = PeftModel.from_pretrained(model, peft_model_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_prompt(instruction): | 
					
						
						|  | system = "You are a coding assistant that will help the user to resolve the following instruction:" | 
					
						
						|  | instruction = "\n### Input: " + instruction | 
					
						
						|  | return system + "\n" + instruction + "\n\n" + "### Response:" + "\n" | 
					
						
						|  |  | 
					
						
						|  | def generate( | 
					
						
						|  | instruction, | 
					
						
						|  | max_new_tokens=128, | 
					
						
						|  | temperature=0.1, | 
					
						
						|  | top_p=0.75, | 
					
						
						|  | top_k=40, | 
					
						
						|  | num_beams=4, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | prompt = create_prompt(instruction) | 
					
						
						|  | print(prompt) | 
					
						
						|  | inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  | input_ids = inputs["input_ids"].to("cuda") | 
					
						
						|  | attention_mask = inputs["attention_mask"].to("cuda") | 
					
						
						|  | generation_config = GenerationConfig( | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | top_p=top_p, | 
					
						
						|  | top_k=top_k, | 
					
						
						|  | num_beams=num_beams, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | generation_output = model.generate( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | generation_config=generation_config, | 
					
						
						|  | return_dict_in_generate=True, | 
					
						
						|  | output_scores=True, | 
					
						
						|  | max_new_tokens=max_new_tokens, | 
					
						
						|  | early_stopping=True | 
					
						
						|  | ) | 
					
						
						|  | s = generation_output.sequences[0] | 
					
						
						|  | output = tokenizer.decode(s) | 
					
						
						|  | return output.split("### Response:")[1].lstrip("\n") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | instruction = """ | 
					
						
						|  | Write a python code for the name Ahmed to be in a reversed order | 
					
						
						|  | """ | 
					
						
						|  | print(generate(instruction)) | 
					
						
						|  | ``` |