YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
English to Vietnamese Translation (Quantized Model)
This repository contains a quantized English-To-Vietnamese translation model fine-tuned on the "HelloWorld2307/eng_viet_translation" dataset and optimized using dynamic quantization for efficient CPU inference.
🔧 Model Details
- Base model: Helsinki-NLP/opus-mt-en-vi
- Dataset: HelloWorld2307/eng_viet_translation
- Training platform: Kaggle (CUDA GPU)
- Fine-tuned: On English-Vietnamese pairs from the Hugging Face dataset
- Quantization: PyTorch Dynamic Quantization (
torch.quantization.quantize_dynamic) - Tokenizer: Saved alongside the model
📁 Folder Structure
quantized_model/ ├── config.json ├── pytorch_model.bin ├── tokenizer_config.json ├── tokenizer.json ├── vocab.json / merges.txt
🚀 Usage
🔹 1. Load Quantized Model for Inference
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("./quantized_model")
# Load quantized model
model = AutoModelForSeq2SeqLM.from_pretrained("./quantized_model")
model.eval()
# Run translation
translator = pipeline("translation_en_to_vi", model=model, tokenizer=tokenizer, device=-1)
text = "Hello, How are you?"
print("English:", translator(text)[0]['translation_text'])
Model Training Summary
Loaded dataset: HelloWorld2307/eng_viet_translation
Mapped translation data: {"en": ..., "vi": ...} before training
Training: 3 epochs using GPU
Disabled: wandb logging
Skipped: Evaluation phase
Saved: Trained + Quantized model and tokenizer
Quantization: torch.quantization.Quantize_dynamic is used for efficient CPU inference
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support