| <h1 align="center">FlagEmbedding</h1> | |
| <p align="center"> | |
| <a href="https://github.com/FlagOpen/FlagEmbedding"> | |
| <img alt="Build" src="https://img.shields.io/badge/Contribution-Welcome-blue"> | |
| </a> | |
| <a href="https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE"> | |
| <img alt="License" src="https://img.shields.io/badge/LICENSE-MIT-green"> | |
| </a> | |
| <a href="https://huggingface.co/C-MTEB"> | |
| <img alt="Build" src="https://img.shields.io/badge/C_MTEB-🤗-yellow"> | |
| </a> | |
| <a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding"> | |
| <img alt="Build" src="https://img.shields.io/badge/FlagEmbedding-1.1-red"> | |
| </a> | |
| </p> | |
| <h4 align="center"> | |
| <p> | |
| <a href=#model-list>Model List</a> | | |
| <a href=#frequently-asked-questions>FAQ</a> | | |
| <a href=#usage>Usage</a> | | |
| <a href="#evaluation">Evaluation</a> | | |
| <a href="#train">Train</a> | | |
| <a href="#contact">Contact</a> | | |
| <a href="#citation">Citation</a> | | |
| <a href="#license">License</a> | |
| <p> | |
| </h4> | |
| [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) | |
| <span style="#FF69B4;"> **Hiring:** We're seeking experienced NLP researchers and intern students focusing on dense retrieval and retrieval-augmented LLMs. If you're interested, please feel free to reach out to us via email at [email protected].</span> | |
| FlagEmbedding can map any text to a low-dimensional dense vector, which can be used for tasks like retrieval, classification, clustering, and semantic search. | |
| And it can also be used in vector databases for LLMs. | |
| ************* 🌟**Updates**🌟 ************* | |
| - 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire: | |
| - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released | |
| - 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released | |
| - 09/12/2023: New models: | |
| - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. | |
| - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. | |
| <details> | |
| <summary>More</summary> | |
| <!-- ### More --> | |
| - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. | |
| - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). | |
| - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** | |
| - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: | |
| - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. | |
| </details> | |
| ## Model List | |
| `bge` is short for `BAAI general embedding`. | |
| | Model | Language | | Description | query instruction for retrieval [1] | | |
| |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | |
| | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder) | | |
| | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | |
| | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | |
| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | |
| | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | |
| | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | |
| | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | |
| | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | |
| | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | |
| | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | |
| | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | |
| | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | |
| | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | |
| | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | |
| | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | | |
| [1\]: If you need to search the relevant passages in a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. | |
| [2\]: Different from the embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. | |
| For example, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 documents to get the final top-3 results. | |
| All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. | |
| If you cannot open the Huggingface Hub, you can also download the models at https://model.baai.ac.cn/models . | |
| ## Frequently asked questions | |
| **1. How to fine-tune bge embedding model?** | |
| Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. | |
| Some suggestions: | |
| - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. | |
| - In general, larger hyper-parameter `per_device_train_batch_size` brings better performance. You can expand it by enabling `--fp16`, `--deepspeed df_config.json` (df_config.json can refer to [ds_config.json](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/ds_config.json), `--gradient_checkpointing`, etc. | |
| - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. | |
| - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. | |
| <details> | |
| <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> | |
| <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> | |
| **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** | |
| Since we finetune the models by contrastive learning with a temperature of 0.01, | |
| the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. | |
| So a similarity score greater than 0.5 does not indicate that the two sentences are similar. | |
| For downstream tasks, such as passage retrieval or semantic similarity, | |
| **what matters is the relative order of the scores, not the absolute value.** | |
| If you need to filter similar sentences based on a similarity threshold, | |
| please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). | |
| </details> | |
| <details> | |
| <summary>3. When does the query instruction need to be used</summary> | |
| <!-- ### When does the query instruction need to be used --> | |
| For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. | |
| No instruction only has a slight degradation in retrieval performance compared with using instruction. | |
| So you can generate embedding without instruction in all cases for convenience. | |
| For a retrieval task that uses short queries to find long related documents, | |
| it is recommended to add instructions for these short queries. | |
| **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** | |
| In all cases, the documents/passages do not need to add the instruction. | |
| </details> | |
| ## Usage | |
| ### Usage for Embedding Model | |
| Here are some examples of using `bge` models with | |
| [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). | |
| #### Using FlagEmbedding | |
| ``` | |
| pip install -U FlagEmbedding | |
| ``` | |
| If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. | |
| ```python | |
| from FlagEmbedding import FlagModel | |
| sentences_1 = ["样例数据-1", "样例数据-2"] | |
| sentences_2 = ["样例数据-3", "样例数据-4"] | |
| model = FlagModel('BAAI/bge-large-zh-v1.5', | |
| query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", | |
| use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation | |
| embeddings_1 = model.encode(sentences_1) | |
| embeddings_2 = model.encode(sentences_2) | |
| similarity = embeddings_1 @ embeddings_2.T | |
| print(similarity) | |
| # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query | |
| # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction | |
| queries = ['query_1', 'query_2'] | |
| passages = ["样例文档-1", "样例文档-2"] | |
| q_embeddings = model.encode_queries(queries) | |
| p_embeddings = model.encode(passages) | |
| scores = q_embeddings @ p_embeddings.T | |
| ``` | |
| For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). | |
| By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. | |
| You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. | |
| #### Using Sentence-Transformers | |
| You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): | |
| ``` | |
| pip install -U sentence-transformers | |
| ``` | |
| ```python | |
| from sentence_transformers import SentenceTransformer | |
| sentences_1 = ["样例数据-1", "样例数据-2"] | |
| sentences_2 = ["样例数据-3", "样例数据-4"] | |
| model = SentenceTransformer('BAAI/bge-large-zh-v1.5') | |
| embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) | |
| embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) | |
| similarity = embeddings_1 @ embeddings_2.T | |
| print(similarity) | |
| ``` | |
| For s2p(short query to long passage) retrieval task, | |
| each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). | |
| But the instruction is not needed for passages. | |
| ```python | |
| from sentence_transformers import SentenceTransformer | |
| queries = ['query_1', 'query_2'] | |
| passages = ["样例文档-1", "样例文档-2"] | |
| instruction = "为这个句子生成表示以用于检索相关文章:" | |
| model = SentenceTransformer('BAAI/bge-large-zh-v1.5') | |
| q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) | |
| p_embeddings = model.encode(passages, normalize_embeddings=True) | |
| scores = q_embeddings @ p_embeddings.T | |
| ``` | |
| #### Using Langchain | |
| You can use `bge` in langchain like this: | |
| ```python | |
| from langchain.embeddings import HuggingFaceBgeEmbeddings | |
| model_name = "BAAI/bge-large-en-v1.5" | |
| model_kwargs = {'device': 'cuda'} | |
| encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity | |
| model = HuggingFaceBgeEmbeddings( | |
| model_name=model_name, | |
| model_kwargs=model_kwargs, | |
| encode_kwargs=encode_kwargs, | |
| query_instruction="为这个句子生成表示以用于检索相关文章:" | |
| ) | |
| model.query_instruction = "为这个句子生成表示以用于检索相关文章:" | |
| ``` | |
| #### Using HuggingFace Transformers | |
| With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. | |
| ```python | |
| from transformers import AutoTokenizer, AutoModel | |
| import torch | |
| # Sentences we want sentence embeddings for | |
| sentences = ["样例数据-1", "样例数据-2"] | |
| # Load model from HuggingFace Hub | |
| tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') | |
| model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') | |
| model.eval() | |
| # Tokenize sentences | |
| encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
| # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) | |
| # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') | |
| # Compute token embeddings | |
| with torch.no_grad(): | |
| model_output = model(**encoded_input) | |
| # Perform pooling. In this case, cls pooling. | |
| sentence_embeddings = model_output[0][:, 0] | |
| # normalize embeddings | |
| sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) | |
| print("Sentence embeddings:", sentence_embeddings) | |
| ``` | |
| ### Usage for Reranker | |
| Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. | |
| You can get a relevance score by inputting query and passage to the reranker. | |
| The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. | |
| #### Using FlagEmbedding | |
| ``` | |
| pip install -U FlagEmbedding | |
| ``` | |
| Get relevance scores (higher scores indicate more relevance): | |
| ```python | |
| from FlagEmbedding import FlagReranker | |
| reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation | |
| score = reranker.compute_score(['query', 'passage']) | |
| print(score) | |
| scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) | |
| print(scores) | |
| ``` | |
| #### Using Huggingface transformers | |
| ```python | |
| import torch | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') | |
| model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') | |
| model.eval() | |
| pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] | |
| with torch.no_grad(): | |
| inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) | |
| scores = model(**inputs, return_dict=True).logits.view(-1, ).float() | |
| print(scores) | |
| ``` | |
| ## Evaluation | |
| `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** | |
| For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). | |
| - **MTEB**: | |
| | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | | |
| |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | |
| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | |
| | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | |
| | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | |
| | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | |
| | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | |
| | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | |
| | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | |
| | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | |
| | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | |
| | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | |
| | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | |
| | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | |
| | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | |
| | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | |
| | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | |
| | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | |
| | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | | |
| - **C-MTEB**: | |
| We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. | |
| Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | |
| | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | | |
| |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | |
| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | |
| | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | |
| | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | |
| | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | |
| | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | |
| | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | |
| | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | |
| | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | |
| | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | |
| | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | |
| | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | |
| | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | |
| | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | |
| | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | |
| | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | |
| | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | | |
| - **Reranking**: | |
| See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | |
| | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | | |
| |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | |
| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | |
| | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | |
| | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | |
| | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | |
| | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | |
| | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | |
| | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | |
| | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | |
| | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | |
| | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | | |
| \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks | |
| ## Train | |
| ### BAAI Embedding | |
| We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pair data using contrastive learning. | |
| **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** | |
| We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). | |
| Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. | |
| For more training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). | |
| ### BGE Reranker | |
| Cross-encoder will perform full-attention over the input pair, | |
| which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. | |
| Therefore, it can be used to re-rank the top-k documents returned by embedding model. | |
| We train the cross-encoder on a multilingual pair data, | |
| The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). | |
| For more details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) | |
| ### Our Contributors: | |
| <a href="https://github.com/FlagOpen/FlagEmbedding/graphs/contributors"> | |
| <img src="https://contrib.rocks/image?repo=FlagOpen/FlagEmbedding" /> | |
| </a> | |
| ## Contact | |
| If you have any question or suggestion related to this project, feel free to open an issue or pull request. | |
| You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). | |
| ## Citation | |
| If you find this repository useful, please consider giving a star :star: and citation | |
| ``` | |
| @misc{bge_embedding, | |
| title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, | |
| author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, | |
| year={2023}, | |
| eprint={2309.07597}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| @misc{llm_embedder, | |
| title={Retrieve Anything To Augment Large Language Models}, | |
| author={Peitian Zhang and Shitao Xiao and Zheng Liu and Zhicheng Dou and Jian-Yun Nie}, | |
| year={2023}, | |
| eprint={2310.07554}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR} | |
| } | |
| ``` | |
| ## License | |
| FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge. | |