flan-t5-base / README.md
joheras's picture
update model card README.md
b9e9e1c
|
raw
history blame
4.23 kB
metadata
license: apache-2.0
tags:
  - simplification
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: flan-t5-base-clara-med
    results: []

flan-t5-base-clara-med

This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2902
  • Rouge1: 28.2733
  • Rouge2: 15.323
  • Rougel: 26.1421
  • Rougelsum: 26.1589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 380 1.4639 26.4167 14.2257 24.5659 24.5948
No log 2.0 760 1.3946 26.7094 14.6358 25.0516 25.075
1.6466 3.0 1140 1.3480 27.3758 14.6821 25.5935 25.6007
1.6466 4.0 1520 1.3221 28.0769 14.9721 26.131 26.1506
1.3671 5.0 1900 1.2988 27.8019 14.9244 25.8242 25.8322
1.3671 6.0 2280 1.2965 27.9071 15.3235 26.1385 26.104
1.3671 7.0 2660 1.2802 28.1866 15.4793 26.301 26.3031
1.2248 8.0 3040 1.2733 27.9974 15.4379 26.1087 26.1159
1.2248 9.0 3420 1.2591 28.2545 15.5006 26.2812 26.3306
1.1155 10.0 3800 1.2609 27.8029 15.0837 25.7989 25.8486
1.1155 11.0 4180 1.2612 27.676 15.0786 25.6261 25.6458
1.1155 12.0 4560 1.2616 27.6811 15.0935 25.6905 25.7125
1.0337 13.0 4940 1.2562 27.88 15.2395 25.8875 25.8988
1.0337 14.0 5320 1.2624 27.9858 15.2151 25.9785 26.0226
0.9784 15.0 5700 1.2674 28.044 15.1312 25.8866 25.9514
0.9784 16.0 6080 1.2588 28.1022 15.3599 26.0641 26.0762
0.9784 17.0 6460 1.2676 27.864 15.1432 25.8981 25.9221
0.9246 18.0 6840 1.2620 27.8826 15.1457 25.8041 25.8971
0.9246 19.0 7220 1.2671 27.965 15.0059 25.94 25.9831
0.8891 20.0 7600 1.2733 28.3035 15.3041 26.2411 26.2723
0.8891 21.0 7980 1.2748 28.5205 15.4851 26.4543 26.4725
0.8891 22.0 8360 1.2793 28.3018 15.3251 26.2781 26.3203
0.8578 23.0 8740 1.2788 28.039 15.238 25.9371 25.9856
0.8578 24.0 9120 1.2901 28.3312 15.3396 26.1722 26.1993
0.8299 25.0 9500 1.2863 28.0727 15.0182 25.91 25.9577
0.8299 26.0 9880 1.2845 28.1828 15.1338 26.039 26.0493
0.8299 27.0 10260 1.2819 28.1547 15.091 26.0256 26.0346
0.8137 28.0 10640 1.2859 28.2203 15.3225 26.1493 26.1591
0.8137 29.0 11020 1.2902 28.2459 15.3142 26.1283 26.1382
0.8061 30.0 11400 1.2902 28.2733 15.323 26.1421 26.1589

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0
  • Datasets 2.8.0
  • Tokenizers 0.12.1