Embed AWS Docs
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("CadenShokat/modernbert-embed-aws")
sentences = [
'change). Saved configuration A saved configuration is a template that you can use as a starting point for creating unique environment configurations. You can create and modify saved configurations, and apply them to environments, using the Elastic Beanstalk console, EB CLI, AWS CLI, or API. The API and the AWS CLI refer to saved configurations as configuration templates. Platform A platform is a combination of an operating system, programming language runtime, web server, application server, and Elastic Beanstalk components. You design and target your web application to a platform. Elastic Beanstalk provides a variety of platforms on which you can build your applications. For details, see Elastic Beanstalk platforms. Elastic Beanstalk web server environments The following diagram shows an example',
'What do the API and the AWS CLI refer to saved configurations as?',
'What can you grant other people permission to do in your AWS account?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0027 |
| cosine_accuracy@3 |
0.2255 |
| cosine_accuracy@5 |
0.5082 |
| cosine_accuracy@10 |
0.6984 |
| cosine_precision@1 |
0.0027 |
| cosine_precision@3 |
0.0752 |
| cosine_precision@5 |
0.1016 |
| cosine_precision@10 |
0.0698 |
| cosine_recall@1 |
0.0027 |
| cosine_recall@3 |
0.2255 |
| cosine_recall@5 |
0.5082 |
| cosine_recall@10 |
0.6984 |
| cosine_ndcg@10 |
0.3032 |
| cosine_mrr@10 |
0.1802 |
| cosine_map@100 |
0.1932 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0 |
| cosine_accuracy@3 |
0.1712 |
| cosine_accuracy@5 |
0.4973 |
| cosine_accuracy@10 |
0.6766 |
| cosine_precision@1 |
0.0 |
| cosine_precision@3 |
0.0571 |
| cosine_precision@5 |
0.0995 |
| cosine_precision@10 |
0.0677 |
| cosine_recall@1 |
0.0 |
| cosine_recall@3 |
0.1712 |
| cosine_recall@5 |
0.4973 |
| cosine_recall@10 |
0.6766 |
| cosine_ndcg@10 |
0.2884 |
| cosine_mrr@10 |
0.168 |
| cosine_map@100 |
0.1823 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0082 |
| cosine_accuracy@3 |
0.1875 |
| cosine_accuracy@5 |
0.4946 |
| cosine_accuracy@10 |
0.6658 |
| cosine_precision@1 |
0.0082 |
| cosine_precision@3 |
0.0625 |
| cosine_precision@5 |
0.0989 |
| cosine_precision@10 |
0.0666 |
| cosine_recall@1 |
0.0082 |
| cosine_recall@3 |
0.1875 |
| cosine_recall@5 |
0.4946 |
| cosine_recall@10 |
0.6658 |
| cosine_ndcg@10 |
0.2899 |
| cosine_mrr@10 |
0.1731 |
| cosine_map@100 |
0.1877 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0027 |
| cosine_accuracy@3 |
0.1875 |
| cosine_accuracy@5 |
0.4402 |
| cosine_accuracy@10 |
0.5842 |
| cosine_precision@1 |
0.0027 |
| cosine_precision@3 |
0.0625 |
| cosine_precision@5 |
0.088 |
| cosine_precision@10 |
0.0584 |
| cosine_recall@1 |
0.0027 |
| cosine_recall@3 |
0.1875 |
| cosine_recall@5 |
0.4402 |
| cosine_recall@10 |
0.5842 |
| cosine_ndcg@10 |
0.2544 |
| cosine_mrr@10 |
0.1516 |
| cosine_map@100 |
0.1693 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0082 |
| cosine_accuracy@3 |
0.1576 |
| cosine_accuracy@5 |
0.337 |
| cosine_accuracy@10 |
0.4783 |
| cosine_precision@1 |
0.0082 |
| cosine_precision@3 |
0.0525 |
| cosine_precision@5 |
0.0674 |
| cosine_precision@10 |
0.0478 |
| cosine_recall@1 |
0.0082 |
| cosine_recall@3 |
0.1576 |
| cosine_recall@5 |
0.337 |
| cosine_recall@10 |
0.4783 |
| cosine_ndcg@10 |
0.2095 |
| cosine_mrr@10 |
0.1263 |
| cosine_map@100 |
0.1443 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 3,312 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 8 tokens
- mean: 156.95 tokens
- max: 265 tokens
|
- min: 6 tokens
- mean: 13.51 tokens
- max: 32 tokens
|
- Samples:
| positive |
anchor |
such as the Kubernetes Dashboard and the section called “Horizontal Pod Autoscaler”. In this topic you learn how to install the Metrics Server. • the section called “Deploy apps with Helm” – The Helm package manager for Kubernetes helps you install and manage applications on your Kubernetes cluster. This topic helps you install and run the Helm binaries so that you can install and manage charts using the Helm CLI on your local computer. • the section called “Tagging your resources” – To help you manage your Amazon EKS resources, you can assign your own metadata to each resource in the form of tags. This topic describes tags and shows you how to create them. • the section called “Service |
What is the section called that helps you install the Metrics Server? |
out orchestrations through cyclically interpreting inputs and producing outputs by using a foundation model. An agent can be used to carry out customer requests. For more information, see Automate tasks in your application using AI agents. • Retrieval augmented generation (RAG) – The process involves: 1. Querying and retrieving information from a data source 2. Augmenting a prompt with this information to provide better context to the foundation model 3. Obtaining a better response from the foundation model using the additional context For more information, see Retrieve data and generate AI responses with Amazon Bedrock Knowledge Bases. • Model customization – The process of using training data to adjust the model parameter values in a base model in order to |
Where can you find more information about AI agents? |
An application that allows your customers to register, discover, and subscribe to your API products (API Gateway usage plans), manage their API keys, and view their usage metrics for your APIs. Edge-optimized API endpoint The default hostname of an API Gateway API that is deployed to the specified Region while using a CloudFront distribution to facilitate client access typically from across AWS Regions. API API Gateway concepts 9 Amazon API Gateway Developer Guide requests are routed to the nearest CloudFront Point of Presence (POP), which typically improves connection time for geographically diverse clients. See API endpoints. Integration request The internal interface of a WebSocket API route or REST API method in API Gateway, in which you map the body of |
What is the internal interface of a WebSocket API route or REST API method in API Gateway called? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
tf32: False
load_best_model_at_end: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: False
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 1.0 |
7 |
- |
0.2693 |
0.2644 |
0.2627 |
0.2275 |
0.1783 |
| 1.4615 |
10 |
5.1989 |
- |
- |
- |
- |
- |
| 2.0 |
14 |
- |
0.2949 |
0.2901 |
0.2832 |
0.2446 |
0.1976 |
| 2.9231 |
20 |
2.6407 |
- |
- |
- |
- |
- |
| 3.0 |
21 |
- |
0.3075 |
0.2905 |
0.2876 |
0.2504 |
0.2081 |
| 4.0 |
28 |
- |
0.3032 |
0.2884 |
0.2899 |
0.2544 |
0.2095 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.1.0
- Transformers: 4.55.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}