DayCardoso's picture
Model save
0a84400 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
model-index:
  - name: modern-bert-seq-class-values-no-context_cru
    results: []

modern-bert-seq-class-values-no-context_cru

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3111
  • Subset Accuracy: 0.2931
  • F1 Macro: 0.3240
  • F1 Micro: 0.4090
  • Precision Macro: 0.4089
  • Recall Macro: 0.2766
  • Roc Auc: 0.8240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 2025
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Subset Accuracy F1 Macro F1 Micro Precision Macro Recall Macro Roc Auc
1.1484 0.5737 767 0.1752 0.1041 0.0849 0.1841 0.2599 0.0598 0.7853
0.6467 1.1473 1534 0.1628 0.2092 0.2078 0.3286 0.5448 0.1682 0.8450
0.604 1.7210 2301 0.1583 0.2337 0.2625 0.3514 0.5243 0.2046 0.8559
0.4872 2.2947 3068 0.1659 0.3022 0.3181 0.4250 0.4744 0.2649 0.8523
0.4325 2.8684 3835 0.1642 0.2970 0.3079 0.4165 0.4808 0.2495 0.8549
0.2084 3.4420 4602 0.2129 0.3120 0.3389 0.4253 0.4198 0.3042 0.8402
0.2093 4.0157 5369 0.2313 0.3136 0.3324 0.4233 0.4264 0.2844 0.8390
0.0995 4.5894 6136 0.2614 0.2967 0.3277 0.4182 0.3957 0.2941 0.8276
0.1017 5.1631 6903 0.2819 0.2820 0.3189 0.3997 0.4125 0.2734 0.8282
0.0569 5.7367 7670 0.2997 0.2930 0.3285 0.4217 0.4055 0.2898 0.8236
0.0628 6.3104 8437 0.3111 0.2931 0.3240 0.4090 0.4089 0.2766 0.8240

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2