modernbert-base-multi-head-values-context

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2990
  • Subset Accuracy: 0.2753
  • F1 Macro: 0.3032
  • F1 Micro: 0.3876
  • Precision Macro: 0.4109
  • Recall Macro: 0.2499
  • Roc Auc: 0.7910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 2025
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 33
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Subset Accuracy F1 Macro F1 Micro Precision Macro Recall Macro Roc Auc
2.5451 0.5002 767 0.2012 0.0027 0.0023 0.0050 0.0718 0.0012 0.6531
1.5075 1.0 1534 0.1838 0.0768 0.0569 0.1319 0.2330 0.0353 0.7437
1.4382 1.5002 2301 0.1781 0.1437 0.1318 0.2281 0.3534 0.0891 0.7792
1.3858 2.0 3068 0.1710 0.1680 0.1582 0.2615 0.4338 0.1091 0.7962
1.3157 2.5002 3835 0.1681 0.1822 0.1787 0.2796 0.4967 0.1267 0.8058
1.291 3.0 4602 0.1622 0.2229 0.2115 0.3291 0.6302 0.1523 0.8195
1.2388 3.5002 5369 0.1614 0.2026 0.2201 0.3082 0.6143 0.1536 0.8222
1.1993 4.0 6136 0.1583 0.2445 0.2454 0.3554 0.5956 0.1783 0.8291
1.1415 4.5002 6903 0.1608 0.2793 0.2883 0.3934 0.5614 0.2220 0.8288
1.1221 5.0 7670 0.1595 0.2384 0.2523 0.3533 0.5982 0.1761 0.8342
1.0726 5.5002 8437 0.1604 0.2727 0.2930 0.3906 0.5584 0.2178 0.8318
1.0381 6.0 9204 0.1629 0.2599 0.2693 0.3759 0.5421 0.2099 0.8315
0.9957 6.5002 9971 0.1662 0.2814 0.2856 0.4001 0.5380 0.2223 0.8300
0.9319 7.0 10738 0.1640 0.2604 0.2960 0.3820 0.5431 0.2201 0.8288
0.8279 7.5002 11505 0.1733 0.2788 0.2953 0.3939 0.5275 0.2307 0.8245
0.8365 8.0 12272 0.1742 0.2757 0.3004 0.3910 0.5030 0.2339 0.8218
0.7168 8.5002 13039 0.1810 0.2863 0.3063 0.4020 0.4589 0.2499 0.8202
0.7158 9.0 13806 0.1804 0.2758 0.3052 0.3910 0.4622 0.2392 0.8212
0.5827 9.5002 14573 0.1880 0.2878 0.3166 0.4034 0.4568 0.2584 0.8159
0.5958 10.0 15340 0.1906 0.2788 0.3114 0.3940 0.4912 0.2522 0.8134
0.4641 10.5002 16107 0.1978 0.2750 0.3104 0.3896 0.4505 0.2501 0.8106
0.4608 11.0 16874 0.2022 0.2724 0.3026 0.3880 0.4840 0.2470 0.8082
0.3546 11.5002 17641 0.2113 0.2773 0.3120 0.3922 0.4598 0.2556 0.8038
0.3575 12.0 18408 0.2133 0.2834 0.3092 0.3980 0.4361 0.2535 0.8045
0.2601 12.5002 19175 0.2226 0.2778 0.3104 0.3897 0.4274 0.2559 0.8003
0.258 13.0 19942 0.2275 0.2824 0.3176 0.3956 0.4188 0.2643 0.8003
0.1778 13.5002 20709 0.2375 0.2686 0.3035 0.3815 0.4103 0.2496 0.7994
0.1803 14.0 21476 0.2426 0.2713 0.3083 0.3865 0.4305 0.2522 0.7968
0.1233 14.5002 22243 0.2501 0.2781 0.3139 0.3906 0.4473 0.2592 0.7970
0.1197 15.0 23010 0.2566 0.2735 0.3081 0.3864 0.4231 0.2519 0.7950
0.0804 15.5002 23777 0.2653 0.2746 0.3065 0.3839 0.4267 0.2512 0.7941
0.0813 16.0 24544 0.2723 0.2740 0.3078 0.3861 0.4372 0.2505 0.7931
0.0548 16.5002 25311 0.2813 0.2776 0.3077 0.3922 0.4544 0.2500 0.7927
0.0535 17.0 26078 0.2882 0.2804 0.3093 0.3912 0.4497 0.2528 0.7914
0.0387 17.5002 26845 0.2990 0.2753 0.3032 0.3876 0.4109 0.2499 0.7910

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2
Downloads last month
4
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for DayCardoso/modernbert-base-multi-head-values-context

Finetuned
(733)
this model