SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_7_8")
# Run inference
sentences = [
'科目:コンクリート。名称:コンクリート打設手間。',
'科目:コンクリート。名称:免震上部コンクリート打設手間。',
'科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC=18 S15粗骨材20。備考:B0-114112 H22.11 協議防水保護コンクリート。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 182,343 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 13.32 tokens
- max: 19 tokens
- min: 11 tokens
- mean: 34.8 tokens
- max: 72 tokens
- 0: ~68.50%
- 1: ~4.50%
- 2: ~27.00%
- Samples:
sentence1 sentence2 label 科目:コンクリート。名称:コンクリートポンプ圧送。科目:コンクリート。名称:ポンプ圧送。1科目:コンクリート。名称:コンクリートポンプ圧送。科目:コンクリート。名称:コンクリートポンプ圧送。摘要:100m3/回以上基本料金別途加算。備考:B0-434226 No.1 市場免震層下部コン。2科目:コンクリート。名称:コンクリートポンプ圧送。科目:コンクリート。名称:コンクリートポンプ圧送。摘要:100m3/回以上基本料金別途加算。備考:B0-434226 No.1 市場基礎部マスコン。2 - Loss:
sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 256per_device_eval_batch_size: 256learning_rate: 1e-05weight_decay: 0.01num_train_epochs: 10warmup_ratio: 0.2fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0701 | 50 | 0.2825 |
| 0.1403 | 100 | 0.1467 |
| 0.2104 | 150 | 0.0947 |
| 0.2805 | 200 | 0.0839 |
| 0.3506 | 250 | 0.0769 |
| 0.4208 | 300 | 0.0684 |
| 0.4909 | 350 | 0.0625 |
| 0.5610 | 400 | 0.0582 |
| 0.6311 | 450 | 0.0579 |
| 0.7013 | 500 | 0.0514 |
| 0.7714 | 550 | 0.0514 |
| 0.8415 | 600 | 0.0448 |
| 0.9116 | 650 | 0.0436 |
| 0.9818 | 700 | 0.0422 |
| 1.0519 | 750 | 0.0371 |
| 1.1220 | 800 | 0.0377 |
| 1.1921 | 850 | 0.0353 |
| 1.2623 | 900 | 0.0354 |
| 1.3324 | 950 | 0.0325 |
| 1.4025 | 1000 | 0.0328 |
| 1.4727 | 1050 | 0.0302 |
| 1.5428 | 1100 | 0.0259 |
| 1.6129 | 1150 | 0.0267 |
| 1.6830 | 1200 | 0.0274 |
| 1.7532 | 1250 | 0.0262 |
| 1.8233 | 1300 | 0.0234 |
| 1.8934 | 1350 | 0.0244 |
| 1.9635 | 1400 | 0.0238 |
| 2.0337 | 1450 | 0.02 |
| 2.1038 | 1500 | 0.0187 |
| 2.1739 | 1550 | 0.0185 |
| 2.2440 | 1600 | 0.0178 |
| 2.3142 | 1650 | 0.016 |
| 2.3843 | 1700 | 0.0169 |
| 2.4544 | 1750 | 0.0171 |
| 2.5245 | 1800 | 0.0146 |
| 2.5947 | 1850 | 0.0145 |
| 2.6648 | 1900 | 0.0146 |
| 2.7349 | 1950 | 0.0139 |
| 2.8050 | 2000 | 0.0119 |
| 2.8752 | 2050 | 0.0131 |
| 2.9453 | 2100 | 0.0124 |
| 3.0154 | 2150 | 0.011 |
| 3.0856 | 2200 | 0.0109 |
| 3.1557 | 2250 | 0.0103 |
| 3.2258 | 2300 | 0.0102 |
| 3.2959 | 2350 | 0.0089 |
| 3.3661 | 2400 | 0.0083 |
| 3.4362 | 2450 | 0.0095 |
| 3.5063 | 2500 | 0.0085 |
| 3.5764 | 2550 | 0.009 |
| 3.6466 | 2600 | 0.0083 |
| 3.7167 | 2650 | 0.0093 |
| 3.7868 | 2700 | 0.0084 |
| 3.8569 | 2750 | 0.0084 |
| 3.9271 | 2800 | 0.0088 |
| 3.9972 | 2850 | 0.0086 |
| 4.0673 | 2900 | 0.0057 |
| 4.1374 | 2950 | 0.0078 |
| 4.2076 | 3000 | 0.0062 |
| 4.2777 | 3050 | 0.0066 |
| 4.3478 | 3100 | 0.006 |
| 4.4180 | 3150 | 0.0078 |
| 4.4881 | 3200 | 0.0056 |
| 4.5582 | 3250 | 0.0064 |
| 4.6283 | 3300 | 0.0063 |
| 4.6985 | 3350 | 0.0058 |
| 4.7686 | 3400 | 0.005 |
| 4.8387 | 3450 | 0.0057 |
| 4.9088 | 3500 | 0.0059 |
| 4.9790 | 3550 | 0.0063 |
| 5.0491 | 3600 | 0.0046 |
| 5.1192 | 3650 | 0.0041 |
| 5.1893 | 3700 | 0.005 |
| 5.2595 | 3750 | 0.0043 |
| 5.3296 | 3800 | 0.0046 |
| 5.3997 | 3850 | 0.0041 |
| 5.4698 | 3900 | 0.006 |
| 5.5400 | 3950 | 0.0052 |
| 5.6101 | 4000 | 0.0043 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -