|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:355097 |
|
- loss:CategoricalContrastiveLoss |
|
widget: |
|
- source_sentence: 科目:コンクリート。名称:EXP_J充填コンクリート。 |
|
sentences: |
|
- 科目:コンクリート。名称:普通コンクリート。 |
|
- 科目:タイル。名称:外壁ガラスモザイクタイル張り。 |
|
- 科目:タイル。名称:段鼻タイル。 |
|
- source_sentence: 科目:コンクリート。名称:基礎コンクリート。 |
|
sentences: |
|
- 科目:コンクリート。名称:免震BPL下部充填コンクリート。 |
|
- 科目:タイル。名称:手洗い水周りタイル(A)。 |
|
- 科目:コンクリート。名称:構造体強度補正。 |
|
- source_sentence: 科目:タイル。名称:巾木磁器質タイル。 |
|
sentences: |
|
- 科目:タイル。名称:段鼻磁器質タイル。 |
|
- 科目:タイル。名称:外壁ガラスモザイクタイル張り。 |
|
- 科目:タイル。名称:海街デッキ床タイル。 |
|
- source_sentence: 科目:コンクリート。名称:機械式移動座席基礎コンクリート。 |
|
sentences: |
|
- 科目:タイル。名称:#階廊下#スロープ床磁器質タイルA。 |
|
- 科目:コンクリート。名称:構造体強度補正。 |
|
- 科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。 |
|
- source_sentence: 科目:コンクリート。名称:EXP_J充填コンクリート。 |
|
sentences: |
|
- 科目:コンクリート。名称:EXP_J充填コンクリート。 |
|
- 科目:コンクリート。名称:免震BPL下部充填コンクリート。 |
|
- 科目:コンクリート。名称:コンクリートポンプ圧送基本料金。 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_8_3") |
|
# Run inference |
|
sentences = [ |
|
'科目:コンクリート。名称:EXP_J充填コンクリート。', |
|
'科目:コンクリート。名称:コンクリートポンプ圧送基本料金。', |
|
'科目:コンクリート。名称:EXP_J充填コンクリート。', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 355,097 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 13.78 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>0: ~74.00%</li><li>1: ~2.60%</li><li>2: ~23.40%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:-----------------------------------------|:-------------------------------------------------|:---------------| |
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。</code> | <code>0</code> | |
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震下部コンクリート打設手間。</code> | <code>0</code> | |
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震下部(外周基礎梁)コンクリート打設手間。</code> | <code>0</code> | |
|
* Loss: <code>sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss</code> |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.2 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.2 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.0360 | 50 | 0.0445 | |
|
| 0.0720 | 100 | 0.0441 | |
|
| 0.1081 | 150 | 0.0409 | |
|
| 0.1441 | 200 | 0.0425 | |
|
| 0.1801 | 250 | 0.0374 | |
|
| 0.2161 | 300 | 0.0356 | |
|
| 0.2522 | 350 | 0.0345 | |
|
| 0.2882 | 400 | 0.0338 | |
|
| 0.3242 | 450 | 0.0312 | |
|
| 0.3602 | 500 | 0.0274 | |
|
| 0.3963 | 550 | 0.0281 | |
|
| 0.4323 | 600 | 0.0298 | |
|
| 0.4683 | 650 | 0.028 | |
|
| 0.5043 | 700 | 0.0282 | |
|
| 0.5403 | 750 | 0.0273 | |
|
| 0.5764 | 800 | 0.0244 | |
|
| 0.6124 | 850 | 0.0238 | |
|
| 0.6484 | 900 | 0.021 | |
|
| 0.6844 | 950 | 0.0206 | |
|
| 0.7205 | 1000 | 0.0234 | |
|
| 0.7565 | 1050 | 0.019 | |
|
| 0.7925 | 1100 | 0.0181 | |
|
| 0.8285 | 1150 | 0.0183 | |
|
| 0.8646 | 1200 | 0.0187 | |
|
| 0.9006 | 1250 | 0.0149 | |
|
| 0.9366 | 1300 | 0.017 | |
|
| 0.9726 | 1350 | 0.0158 | |
|
| 1.0086 | 1400 | 0.0133 | |
|
| 1.0447 | 1450 | 0.0124 | |
|
| 1.0807 | 1500 | 0.0143 | |
|
| 1.1167 | 1550 | 0.0131 | |
|
| 1.1527 | 1600 | 0.0119 | |
|
| 1.1888 | 1650 | 0.0112 | |
|
| 1.2248 | 1700 | 0.0117 | |
|
| 1.2608 | 1750 | 0.0107 | |
|
| 1.2968 | 1800 | 0.0099 | |
|
| 1.3329 | 1850 | 0.0112 | |
|
| 1.3689 | 1900 | 0.01 | |
|
| 1.4049 | 1950 | 0.0105 | |
|
| 1.4409 | 2000 | 0.0092 | |
|
| 1.4769 | 2050 | 0.0095 | |
|
| 1.5130 | 2100 | 0.0104 | |
|
| 1.5490 | 2150 | 0.0087 | |
|
| 1.5850 | 2200 | 0.0092 | |
|
| 1.6210 | 2250 | 0.0088 | |
|
| 1.6571 | 2300 | 0.0088 | |
|
| 1.6931 | 2350 | 0.0098 | |
|
| 1.7291 | 2400 | 0.0086 | |
|
| 1.7651 | 2450 | 0.0091 | |
|
| 1.8012 | 2500 | 0.0072 | |
|
| 1.8372 | 2550 | 0.0069 | |
|
| 1.8732 | 2600 | 0.0076 | |
|
| 1.9092 | 2650 | 0.0069 | |
|
| 1.9452 | 2700 | 0.0077 | |
|
| 1.9813 | 2750 | 0.0076 | |
|
| 2.0173 | 2800 | 0.0065 | |
|
| 2.0533 | 2850 | 0.0067 | |
|
| 2.0893 | 2900 | 0.0059 | |
|
| 2.1254 | 2950 | 0.0061 | |
|
| 2.1614 | 3000 | 0.0055 | |
|
| 2.1974 | 3050 | 0.0055 | |
|
| 2.2334 | 3100 | 0.0057 | |
|
| 2.2695 | 3150 | 0.0058 | |
|
| 2.3055 | 3200 | 0.0069 | |
|
| 2.3415 | 3250 | 0.0058 | |
|
| 2.3775 | 3300 | 0.0054 | |
|
| 2.4135 | 3350 | 0.0058 | |
|
| 2.4496 | 3400 | 0.0047 | |
|
| 2.4856 | 3450 | 0.0045 | |
|
| 2.5216 | 3500 | 0.0054 | |
|
| 2.5576 | 3550 | 0.0041 | |
|
| 2.5937 | 3600 | 0.0048 | |
|
| 2.6297 | 3650 | 0.0038 | |
|
| 2.6657 | 3700 | 0.0048 | |
|
| 2.7017 | 3750 | 0.0047 | |
|
| 2.7378 | 3800 | 0.005 | |
|
| 2.7738 | 3850 | 0.0046 | |
|
| 2.8098 | 3900 | 0.0045 | |
|
| 2.8458 | 3950 | 0.0042 | |
|
| 2.8818 | 4000 | 0.0049 | |
|
| 2.9179 | 4050 | 0.0043 | |
|
| 2.9539 | 4100 | 0.0042 | |
|
| 2.9899 | 4150 | 0.0039 | |
|
| 3.0259 | 4200 | 0.004 | |
|
| 3.0620 | 4250 | 0.0032 | |
|
| 3.0980 | 4300 | 0.0038 | |
|
| 3.1340 | 4350 | 0.0034 | |
|
| 3.1700 | 4400 | 0.0033 | |
|
| 3.2061 | 4450 | 0.0036 | |
|
| 3.2421 | 4500 | 0.0029 | |
|
| 3.2781 | 4550 | 0.0032 | |
|
| 3.3141 | 4600 | 0.0036 | |
|
| 3.3501 | 4650 | 0.0046 | |
|
| 3.3862 | 4700 | 0.0037 | |
|
| 3.4222 | 4750 | 0.0035 | |
|
| 3.4582 | 4800 | 0.0034 | |
|
| 3.4942 | 4850 | 0.0038 | |
|
| 3.5303 | 4900 | 0.0034 | |
|
| 3.5663 | 4950 | 0.0035 | |
|
| 3.6023 | 5000 | 0.0037 | |
|
| 3.6383 | 5050 | 0.0031 | |
|
| 3.6744 | 5100 | 0.0042 | |
|
| 3.7104 | 5150 | 0.0034 | |
|
| 3.7464 | 5200 | 0.0035 | |
|
| 3.7824 | 5250 | 0.0032 | |
|
| 3.8184 | 5300 | 0.0032 | |
|
| 3.8545 | 5350 | 0.0035 | |
|
| 3.8905 | 5400 | 0.003 | |
|
| 3.9265 | 5450 | 0.0033 | |
|
| 3.9625 | 5500 | 0.0037 | |
|
| 3.9986 | 5550 | 0.0028 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.13 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.52.4 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.7.0 |
|
- Datasets: 2.14.4 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |