|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:12611
|
|
- loss:CustomBatchAllTripletLoss
|
|
widget:
|
|
- source_sentence: 科目:コンクリート。名称:免震基礎部コンクリート。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:受付表示。
|
|
- 科目:ユニット及びその他。名称:F-#階数表示-A(EV前・屋外階段)。
|
|
- 科目:ユニット及びその他。名称:P-#-aEV前フロア案内サイン。
|
|
- source_sentence: 科目:コンクリート。名称:普通コンクリート。摘要:FC=24 S18粗骨材地上部。備考:代価表 0056。
|
|
sentences:
|
|
- 科目:タイル。名称:スロープ床タイル。
|
|
- 科目:ユニット及びその他。名称:議場表示。
|
|
- 科目:コンクリート。名称:コンクリート打設手間・ポンプ圧送。
|
|
- source_sentence: 科目:コンクリート。名称:普通コンクリート。摘要:FC=21 S18粗骨材地上部。備考:代価表 0057。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:#階女子トイレ鏡。
|
|
- 科目:ユニット及びその他。名称:多目的ホール座席案内サイン。
|
|
- 科目:ユニット及びその他。名称:エントランスサイン。
|
|
- source_sentence: 科目:タイル。名称:段床タイル張り。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:エレベーターカードリーダー関連工事。
|
|
- 科目:ユニット及びその他。名称:男子便所鏡。
|
|
- 科目:ユニット及びその他。名称:#階テラス床人工木デッキ。
|
|
- source_sentence: 科目:タイル。名称:床磁器質タイル。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:#F薬渡し窓口カウンター。
|
|
- 科目:コンクリート。名称:設備基礎コンクリート。摘要:FC21N/mm2 スランプ18。備考:代価表 0036。
|
|
- 科目:ユニット及びその他。名称:F-#c教員棚。
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
---
|
|
|
|
# SentenceTransformer
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v_1_0_5")
|
|
# Run inference
|
|
sentences = [
|
|
'科目:タイル。名称:床磁器質タイル。',
|
|
'科目:ユニット及びその他。名称:#F薬渡し窓口カウンター。',
|
|
'科目:ユニット及びその他。名称:F-#c教員棚。',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
* Size: 12,611 training samples
|
|
* Columns: <code>sentence</code> and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence | label |
|
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| type | string | int |
|
|
| details | <ul><li>min: 11 tokens</li><li>mean: 18.16 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~0.30%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.30%</li><li>12: ~1.10%</li><li>13: ~0.30%</li><li>14: ~0.30%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.30%</li><li>19: ~0.30%</li><li>20: ~0.30%</li><li>21: ~0.30%</li><li>22: ~0.30%</li><li>23: ~0.40%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.90%</li><li>28: ~0.30%</li><li>29: ~0.40%</li><li>30: ~0.30%</li><li>31: ~1.10%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.30%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.30%</li><li>45: ~0.30%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.40%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.60%</li><li>54: ~0.70%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.30%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.30%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.30%</li><li>65: ~0.30%</li><li>66: ~0.30%</li><li>67: ~0.30%</li><li>68: ~0.50%</li><li>69: ~0.30%</li><li>70: ~0.30%</li><li>71: ~0.30%</li><li>72: ~0.30%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.80%</li><li>85: ~0.60%</li><li>86: ~0.30%</li><li>87: ~0.30%</li><li>88: ~0.30%</li><li>89: ~0.30%</li><li>90: ~0.30%</li><li>91: ~0.30%</li><li>92: ~0.30%</li><li>93: ~0.50%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.30%</li><li>97: ~0.30%</li><li>98: ~0.80%</li><li>99: ~0.60%</li><li>100: ~0.50%</li><li>101: ~0.30%</li><li>102: ~0.30%</li><li>103: ~16.50%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~0.30%</li><li>107: ~0.30%</li><li>108: ~0.30%</li><li>109: ~0.30%</li><li>110: ~0.30%</li><li>111: ~0.30%</li><li>112: ~0.50%</li><li>113: ~0.30%</li><li>114: ~0.30%</li><li>115: ~0.30%</li><li>116: ~0.30%</li><li>117: ~0.30%</li><li>118: ~0.30%</li><li>119: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.70%</li><li>122: ~0.30%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.40%</li><li>126: ~2.10%</li><li>127: ~2.10%</li><li>128: ~0.30%</li><li>129: ~0.30%</li><li>130: ~0.50%</li><li>131: ~0.50%</li><li>132: ~0.50%</li><li>133: ~0.40%</li><li>134: ~0.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.80%</li><li>138: ~0.30%</li><li>139: ~0.30%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.30%</li><li>143: ~0.30%</li><li>144: ~0.30%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.30%</li><li>150: ~0.50%</li><li>151: ~0.30%</li><li>152: ~0.40%</li><li>153: ~0.30%</li><li>154: ~0.30%</li><li>155: ~0.30%</li><li>156: ~0.30%</li><li>157: ~0.30%</li><li>158: ~0.30%</li><li>159: ~0.30%</li><li>160: ~0.30%</li><li>161: ~0.30%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.40%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~0.30%</li><li>168: ~0.30%</li><li>169: ~0.30%</li><li>170: ~0.30%</li><li>171: ~0.70%</li><li>172: ~0.30%</li><li>173: ~0.30%</li><li>174: ~0.30%</li><li>175: ~1.30%</li><li>176: ~0.30%</li><li>177: ~0.40%</li><li>178: ~0.30%</li><li>179: ~0.30%</li><li>180: ~0.30%</li><li>181: ~1.50%</li><li>182: ~0.30%</li><li>183: ~0.30%</li><li>184: ~0.30%</li><li>185: ~0.30%</li><li>186: ~0.30%</li><li>187: ~0.30%</li><li>188: ~0.30%</li><li>189: ~1.60%</li><li>190: ~0.30%</li><li>191: ~0.30%</li><li>192: ~7.20%</li><li>193: ~0.30%</li><li>194: ~1.00%</li><li>195: ~0.30%</li><li>196: ~0.30%</li><li>197: ~0.30%</li><li>198: ~1.50%</li></ul> |
|
|
* Samples:
|
|
| sentence | label |
|
|
|:-----------------------------------------|:---------------|
|
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
|
* Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `per_device_train_batch_size`: 512
|
|
- `per_device_eval_batch_size`: 512
|
|
- `learning_rate`: 1e-05
|
|
- `weight_decay`: 0.01
|
|
- `num_train_epochs`: 250
|
|
- `warmup_ratio`: 0.2
|
|
- `fp16`: True
|
|
- `batch_sampler`: group_by_label
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: no
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 512
|
|
- `per_device_eval_batch_size`: 512
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 1e-05
|
|
- `weight_decay`: 0.01
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 250
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.2
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `tp_size`: 0
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: group_by_label
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
<details><summary>Click to expand</summary>
|
|
|
|
| Epoch | Step | Training Loss |
|
|
|:--------:|:----:|:-------------:|
|
|
| 2.24 | 50 | 0.0583 |
|
|
| 4.48 | 100 | 0.0626 |
|
|
| 6.72 | 150 | 0.0638 |
|
|
| 9.08 | 200 | 0.0659 |
|
|
| 11.32 | 250 | 0.0629 |
|
|
| 13.56 | 300 | 0.0608 |
|
|
| 15.8 | 350 | 0.0607 |
|
|
| 18.16 | 400 | 0.0584 |
|
|
| 20.4 | 450 | 0.0577 |
|
|
| 22.64 | 500 | 0.0566 |
|
|
| 24.88 | 550 | 0.0594 |
|
|
| 27.24 | 600 | 0.0552 |
|
|
| 29.48 | 650 | 0.0512 |
|
|
| 31.72 | 700 | 0.053 |
|
|
| 34.08 | 750 | 0.0538 |
|
|
| 36.32 | 800 | 0.0506 |
|
|
| 38.56 | 850 | 0.054 |
|
|
| 40.8 | 900 | 0.0498 |
|
|
| 43.16 | 950 | 0.0538 |
|
|
| 45.4 | 1000 | 0.0491 |
|
|
| 47.64 | 1050 | 0.0445 |
|
|
| 49.88 | 1100 | 0.0466 |
|
|
| 52.24 | 1150 | 0.0458 |
|
|
| 54.48 | 1200 | 0.0507 |
|
|
| 56.72 | 1250 | 0.0408 |
|
|
| 59.08 | 1300 | 0.0462 |
|
|
| 61.32 | 1350 | 0.0443 |
|
|
| 63.56 | 1400 | 0.0392 |
|
|
| 65.8 | 1450 | 0.0389 |
|
|
| 68.16 | 1500 | 0.0455 |
|
|
| 70.4 | 1550 | 0.049 |
|
|
| 72.64 | 1600 | 0.0435 |
|
|
| 74.88 | 1650 | 0.0416 |
|
|
| 77.24 | 1700 | 0.041 |
|
|
| 79.48 | 1750 | 0.0443 |
|
|
| 81.72 | 1800 | 0.0423 |
|
|
| 84.08 | 1850 | 0.0457 |
|
|
| 86.32 | 1900 | 0.0375 |
|
|
| 88.56 | 1950 | 0.0428 |
|
|
| 90.8 | 2000 | 0.037 |
|
|
| 93.16 | 2050 | 0.0441 |
|
|
| 95.4 | 2100 | 0.0382 |
|
|
| 97.64 | 2150 | 0.0424 |
|
|
| 99.88 | 2200 | 0.041 |
|
|
| 1.6667 | 50 | 0.0381 |
|
|
| 3.6111 | 100 | 0.0373 |
|
|
| 5.5556 | 150 | 0.0381 |
|
|
| 7.5 | 200 | 0.0394 |
|
|
| 9.4444 | 250 | 0.0399 |
|
|
| 11.3889 | 300 | 0.0405 |
|
|
| 13.3333 | 350 | 0.0409 |
|
|
| 15.2778 | 400 | 0.0408 |
|
|
| 17.2222 | 450 | 0.0404 |
|
|
| 19.1667 | 500 | 0.0396 |
|
|
| 21.1111 | 550 | 0.038 |
|
|
| 23.0556 | 600 | 0.0346 |
|
|
| 24.7222 | 650 | 0.0381 |
|
|
| 26.6667 | 700 | 0.0356 |
|
|
| 28.6111 | 750 | 0.0344 |
|
|
| 30.5556 | 800 | 0.0344 |
|
|
| 32.5 | 850 | 0.0365 |
|
|
| 34.4444 | 900 | 0.0354 |
|
|
| 36.3889 | 950 | 0.0324 |
|
|
| 38.3333 | 1000 | 0.0301 |
|
|
| 40.2778 | 1050 | 0.038 |
|
|
| 42.2222 | 1100 | 0.0351 |
|
|
| 44.1667 | 1150 | 0.0344 |
|
|
| 46.1111 | 1200 | 0.0339 |
|
|
| 48.0556 | 1250 | 0.0358 |
|
|
| 49.7222 | 1300 | 0.0312 |
|
|
| 51.6667 | 1350 | 0.0278 |
|
|
| 53.6111 | 1400 | 0.0342 |
|
|
| 55.5556 | 1450 | 0.0291 |
|
|
| 57.5 | 1500 | 0.03 |
|
|
| 59.4444 | 1550 | 0.03 |
|
|
| 61.3889 | 1600 | 0.0303 |
|
|
| 63.3333 | 1650 | 0.0339 |
|
|
| 65.2778 | 1700 | 0.0342 |
|
|
| 67.2222 | 1750 | 0.0283 |
|
|
| 69.1667 | 1800 | 0.0271 |
|
|
| 71.1111 | 1850 | 0.0327 |
|
|
| 73.0556 | 1900 | 0.0296 |
|
|
| 74.7222 | 1950 | 0.0295 |
|
|
| 76.6667 | 2000 | 0.0259 |
|
|
| 78.6111 | 2050 | 0.0296 |
|
|
| 80.5556 | 2100 | 0.0256 |
|
|
| 82.5 | 2150 | 0.0271 |
|
|
| 84.4444 | 2200 | 0.0287 |
|
|
| 86.3889 | 2250 | 0.028 |
|
|
| 88.3333 | 2300 | 0.0275 |
|
|
| 90.2778 | 2350 | 0.0294 |
|
|
| 92.2222 | 2400 | 0.0243 |
|
|
| 94.1667 | 2450 | 0.0275 |
|
|
| 96.1111 | 2500 | 0.0258 |
|
|
| 98.0556 | 2550 | 0.0215 |
|
|
| 99.7222 | 2600 | 0.0252 |
|
|
| 101.6667 | 2650 | 0.029 |
|
|
| 103.6111 | 2700 | 0.0265 |
|
|
| 105.5556 | 2750 | 0.0258 |
|
|
| 107.5 | 2800 | 0.0222 |
|
|
| 109.4444 | 2850 | 0.0263 |
|
|
| 111.3889 | 2900 | 0.0266 |
|
|
| 113.3333 | 2950 | 0.0211 |
|
|
| 115.2778 | 3000 | 0.0251 |
|
|
| 117.2222 | 3050 | 0.0224 |
|
|
| 119.1667 | 3100 | 0.0204 |
|
|
| 121.1111 | 3150 | 0.0226 |
|
|
| 123.0556 | 3200 | 0.025 |
|
|
| 124.7222 | 3250 | 0.0214 |
|
|
| 126.6667 | 3300 | 0.0237 |
|
|
| 128.6111 | 3350 | 0.0287 |
|
|
| 130.5556 | 3400 | 0.0229 |
|
|
| 132.5 | 3450 | 0.0171 |
|
|
| 134.4444 | 3500 | 0.0215 |
|
|
| 136.3889 | 3550 | 0.0236 |
|
|
| 138.3333 | 3600 | 0.0238 |
|
|
| 140.2778 | 3650 | 0.0168 |
|
|
| 142.2222 | 3700 | 0.0281 |
|
|
| 144.1667 | 3750 | 0.0247 |
|
|
| 146.1111 | 3800 | 0.02 |
|
|
| 148.0556 | 3850 | 0.0225 |
|
|
| 149.7222 | 3900 | 0.0189 |
|
|
| 151.6667 | 3950 | 0.0178 |
|
|
| 153.6111 | 4000 | 0.0174 |
|
|
| 155.5556 | 4050 | 0.0165 |
|
|
| 157.5 | 4100 | 0.0197 |
|
|
| 159.4444 | 4150 | 0.0226 |
|
|
| 161.3889 | 4200 | 0.0126 |
|
|
| 163.3333 | 4250 | 0.0224 |
|
|
| 165.2778 | 4300 | 0.0174 |
|
|
| 167.2222 | 4350 | 0.0214 |
|
|
| 169.1667 | 4400 | 0.0159 |
|
|
| 171.1111 | 4450 | 0.0121 |
|
|
| 173.0556 | 4500 | 0.0194 |
|
|
| 174.7222 | 4550 | 0.0216 |
|
|
| 176.6667 | 4600 | 0.0193 |
|
|
| 178.6111 | 4650 | 0.0157 |
|
|
| 180.5556 | 4700 | 0.0159 |
|
|
| 182.5 | 4750 | 0.016 |
|
|
| 184.4444 | 4800 | 0.0182 |
|
|
| 186.3889 | 4850 | 0.0181 |
|
|
| 188.3333 | 4900 | 0.0164 |
|
|
| 190.2778 | 4950 | 0.0204 |
|
|
| 192.2222 | 5000 | 0.0188 |
|
|
| 194.1667 | 5050 | 0.0155 |
|
|
| 196.1111 | 5100 | 0.0166 |
|
|
| 198.0556 | 5150 | 0.0165 |
|
|
| 199.7222 | 5200 | 0.0111 |
|
|
| 201.6667 | 5250 | 0.0181 |
|
|
| 203.6111 | 5300 | 0.0196 |
|
|
| 205.5556 | 5350 | 0.0164 |
|
|
| 207.5 | 5400 | 0.0125 |
|
|
| 209.4444 | 5450 | 0.0168 |
|
|
| 211.3889 | 5500 | 0.0174 |
|
|
| 213.3333 | 5550 | 0.0144 |
|
|
| 215.2778 | 5600 | 0.0169 |
|
|
| 217.2222 | 5650 | 0.019 |
|
|
| 219.1667 | 5700 | 0.0178 |
|
|
| 221.1111 | 5750 | 0.014 |
|
|
| 223.0556 | 5800 | 0.0154 |
|
|
| 224.7222 | 5850 | 0.0151 |
|
|
| 226.6667 | 5900 | 0.0105 |
|
|
| 228.6111 | 5950 | 0.013 |
|
|
| 230.5556 | 6000 | 0.0152 |
|
|
| 232.5 | 6050 | 0.0138 |
|
|
| 234.4444 | 6100 | 0.0133 |
|
|
| 236.3889 | 6150 | 0.015 |
|
|
| 238.3333 | 6200 | 0.0119 |
|
|
| 240.2778 | 6250 | 0.0185 |
|
|
| 242.2222 | 6300 | 0.0104 |
|
|
| 244.1667 | 6350 | 0.0155 |
|
|
| 246.1111 | 6400 | 0.0135 |
|
|
| 248.0556 | 6450 | 0.0141 |
|
|
| 249.7222 | 6500 | 0.0168 |
|
|
|
|
</details>
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.12
|
|
- Sentence Transformers: 3.4.1
|
|
- Transformers: 4.51.3
|
|
- PyTorch: 2.6.0+cu124
|
|
- Accelerate: 1.6.0
|
|
- Datasets: 3.5.1
|
|
- Tokenizers: 0.21.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### CustomBatchAllTripletLoss
|
|
```bibtex
|
|
@misc{hermans2017defense,
|
|
title={In Defense of the Triplet Loss for Person Re-Identification},
|
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
|
year={2017},
|
|
eprint={1703.07737},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |