|
|
--- |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- imagefolder |
|
|
metrics: |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: efficientnet-b5-Brain_Tumors_Image_Classification |
|
|
results: |
|
|
- task: |
|
|
name: Image Classification |
|
|
type: image-classification |
|
|
dataset: |
|
|
name: imagefolder |
|
|
type: imagefolder |
|
|
config: default |
|
|
split: train |
|
|
args: default |
|
|
metrics: |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.8020304568527918 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# efficientnet-b5-Brain_Tumors_Image_Classification |
|
|
|
|
|
This model is a fine-tuned version of [google/efficientnet-b5](https://huggingface.co/google/efficientnet-b5) on the imagefolder dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.9410 |
|
|
- Accuracy: 0.8020 |
|
|
- Weighted f1: 0.7736 |
|
|
- Micro f1: 0.8020 |
|
|
- Macro f1: 0.7802 |
|
|
- Weighted recall: 0.8020 |
|
|
- Micro recall: 0.8020 |
|
|
- Macro recall: 0.7977 |
|
|
- Weighted precision: 0.8535 |
|
|
- Micro precision: 0.8020 |
|
|
- Macro precision: 0.8682 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0002 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 3 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
|
| 1.3872 | 1.0 | 180 | 1.0601 | 0.6853 | 0.6485 | 0.6853 | 0.6550 | 0.6853 | 0.6853 | 0.6802 | 0.8177 | 0.6853 | 0.8330 | |
|
|
| 1.3872 | 2.0 | 360 | 0.9533 | 0.7843 | 0.7483 | 0.7843 | 0.7548 | 0.7843 | 0.7843 | 0.7819 | 0.8354 | 0.7843 | 0.8471 | |
|
|
| 0.8186 | 3.0 | 540 | 0.9410 | 0.8020 | 0.7736 | 0.8020 | 0.7802 | 0.8020 | 0.8020 | 0.7977 | 0.8535 | 0.8020 | 0.8682 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.28.1 |
|
|
- Pytorch 2.0.0 |
|
|
- Datasets 2.11.0 |
|
|
- Tokenizers 0.13.3 |
|
|
|