FastWan
Collection
models trained with video sparse attention: https://arxiv.org/abs/2505.13389 and distillation
•
9 items
•
Updated
•
10
Note that this is a preview model, meaning there are still quality issues. The inference speed is also unoptimized.
We're excited to introduce the CausalWan2.2 I2V A14B series—a new line of models.
from fastvideo import VideoGenerator, SamplingParam
import json
# from fastvideo.configs.sample import SamplingParam
OUTPUT_PATH = "video_samples_self_forcing_causal_wan2_2_14B_i2v"
def main():
# FastVideo will automatically use the optimal default arguments for the
# model.
# If a local path is provided, FastVideo will make a best effort
# attempt to identify the optimal arguments.
generator = VideoGenerator.from_pretrained(
"FastVideo/SFWan2.2-I2V-A14B-Preview-Diffusers",
# FastVideo will automatically handle distributed setup
num_gpus=1,
use_fsdp_inference=True,
dit_cpu_offload=True, # DiT need to be offloaded for MoE
dit_precision="fp32",
vae_cpu_offload=False,
text_encoder_cpu_offload=True,
dmd_denoising_steps=[1000, 850, 700, 550, 350, 275, 200, 125],
# Set pin_cpu_memory to false if CPU RAM is limited and there're no frequent CPU-GPU transfer
pin_cpu_memory=True,
# image_encoder_cpu_offload=False,
)
sampling_param = SamplingParam.from_pretrained("FastVideo/SFWan2.2-I2V-A14B-Preview-Diffusers")
sampling_param.num_frames = 81
sampling_param.width = 832
sampling_param.height = 480
sampling_param.seed = 1000
with open("prompts/mixkit_i2v.jsonl", "r") as f:
prompt_image_pairs = json.load(f)
for prompt_image_pair in prompt_image_pairs:
prompt = prompt_image_pair["prompt"]
image_path = prompt_image_pair["image_path"]
_ = generator.generate_video(prompt, image_path=image_path, output_path=OUTPUT_PATH, save_video=True, sampling_param=sampling_param)
if __name__ == "__main__":
main()
Base model
Wan-AI/Wan2.2-I2V-A14B