HimanshuGoyal2004's picture
upload fine-tuned RT-DETRv2 trashify object detection model
bf66227 verified
metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_v2_r50vd
tags:
  - generated_from_trainer
model-index:
  - name: rt_detrv2_finetuned_trashify_box_detector_v1
    results: []

rt_detrv2_finetuned_trashify_box_detector_v1

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.5442
  • Map: 0.4922
  • Map 50: 0.6651
  • Map 75: 0.5738
  • Map Small: 0.0437
  • Map Medium: 0.2434
  • Map Large: 0.5161
  • Mar 1: 0.5643
  • Mar 10: 0.7132
  • Mar 100: 0.784
  • Mar Small: 0.35
  • Mar Medium: 0.5574
  • Mar Large: 0.8171
  • Map Bin: 0.7493
  • Mar 100 Bin: 0.9121
  • Map Hand: 0.6106
  • Mar 100 Hand: 0.8304
  • Map Not Bin: 0.1567
  • Mar 100 Not Bin: 0.6857
  • Map Not Hand: -1.0
  • Mar 100 Not Hand: -1.0
  • Map Not Trash: 0.2247
  • Mar 100 Not Trash: 0.6514
  • Map Trash: 0.6532
  • Mar 100 Trash: 0.7912
  • Map Trash Arm: 0.5585
  • Mar 100 Trash Arm: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Bin Mar 100 Bin Map Hand Mar 100 Hand Map Not Bin Mar 100 Not Bin Map Not Hand Mar 100 Not Hand Map Not Trash Mar 100 Not Trash Map Trash Mar 100 Trash Map Trash Arm Mar 100 Trash Arm
67.0877 1.0 50 19.3209 0.1877 0.2836 0.2027 0.0 0.0275 0.1918 0.2507 0.386 0.461 0.0 0.2591 0.491 0.5792 0.8638 0.4197 0.7284 0.0003 0.1357 -1.0 -1.0 0.0082 0.3806 0.1191 0.6575 0.0 0.0
25.8229 2.0 100 11.8619 0.4038 0.5531 0.4491 0.0125 0.1542 0.4196 0.4788 0.6431 0.7361 0.05 0.55 0.7718 0.6978 0.9028 0.6071 0.8353 0.0384 0.6357 -1.0 -1.0 0.1366 0.5569 0.5997 0.7858 0.3432 0.7
18.4735 3.0 150 10.5653 0.4672 0.6372 0.4977 0.075 0.1303 0.4887 0.5061 0.6781 0.7422 0.15 0.5006 0.7848 0.7205 0.8993 0.5618 0.801 0.1122 0.6571 -1.0 -1.0 0.1551 0.5861 0.6429 0.7761 0.6109 0.7333
16.1638 4.0 200 9.9060 0.5041 0.6605 0.5598 0.325 0.2294 0.528 0.5501 0.7139 0.7795 0.4 0.5562 0.818 0.748 0.9071 0.6237 0.8294 0.13 0.6286 -1.0 -1.0 0.1967 0.5958 0.6512 0.8159 0.675 0.9
14.7136 5.0 250 9.9183 0.4965 0.6616 0.5754 0.1583 0.1233 0.5236 0.5357 0.7272 0.7758 0.35 0.4563 0.8224 0.7495 0.9043 0.6082 0.8284 0.1446 0.6571 -1.0 -1.0 0.2102 0.6069 0.6404 0.7912 0.6261 0.8667
13.5916 6.0 300 9.7900 0.4673 0.648 0.5194 0.0836 0.1523 0.4919 0.5113 0.7207 0.7754 0.4 0.5989 0.8027 0.7366 0.9078 0.5901 0.8284 0.1261 0.6714 -1.0 -1.0 0.2205 0.65 0.6566 0.7947 0.4737 0.8
12.7902 7.0 350 9.6513 0.4951 0.6667 0.5719 0.31 0.1765 0.5194 0.5423 0.7193 0.7883 0.35 0.5205 0.821 0.7423 0.9085 0.6048 0.8284 0.1127 0.6357 -1.0 -1.0 0.2368 0.6222 0.6626 0.8018 0.6116 0.9333
12.0119 8.0 400 9.4572 0.4887 0.6694 0.5403 0.1214 0.2586 0.5161 0.5487 0.7362 0.7912 0.35 0.5631 0.8232 0.7694 0.9071 0.6146 0.8373 0.1538 0.6929 -1.0 -1.0 0.2326 0.6361 0.6609 0.8071 0.5008 0.8667
11.3795 9.0 450 9.6143 0.4856 0.6607 0.5713 0.0488 0.2222 0.5081 0.5622 0.6976 0.7705 0.3 0.5205 0.8049 0.7433 0.8993 0.6103 0.8333 0.1385 0.6714 -1.0 -1.0 0.2177 0.6347 0.6453 0.7841 0.5585 0.8
11.0061 10.0 500 9.5442 0.4922 0.6651 0.5738 0.0437 0.2434 0.5161 0.5643 0.7132 0.784 0.35 0.5574 0.8171 0.7493 0.9121 0.6106 0.8304 0.1567 0.6857 -1.0 -1.0 0.2247 0.6514 0.6532 0.7912 0.5585 0.8333

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1