|
--- |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M/blob/main/LICENSE |
|
language: |
|
- en |
|
- ko |
|
pipeline_tag: text-generation |
|
base_model: Qwen/Qwen2.5-14B-Instruct-1M |
|
tags: |
|
- chat |
|
library_name: transformers |
|
--- |
|
|
|
## Model Summary |
|
T3Q-qwen2.5-14b-v1.2-e2 is a post-trained version of the Qwen/Qwen2.5-14B-Instruct-1M model. |
|
(LoRA-8-4-0.0001-cosine-32-16 with train_data_v1.2) |
|
 |
|
|
|
## Quick Start |
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "JungZoona/T3Q-qwen2.5-14b-v1.2-e2" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|