|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-small-openassistant-chat |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-openassistant-chat |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1785 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 80 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 40 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 3.3768 | 1.0 | 301 | 2.3842 | |
|
| 2.6839 | 2.0 | 602 | 2.3277 | |
|
| 2.6351 | 3.0 | 903 | 2.2995 | |
|
| 2.6016 | 4.0 | 1204 | 2.2818 | |
|
| 2.5803 | 5.0 | 1505 | 2.2680 | |
|
| 2.5587 | 6.0 | 1806 | 2.2571 | |
|
| 2.541 | 7.0 | 2107 | 2.2481 | |
|
| 2.5323 | 8.0 | 2408 | 2.2409 | |
|
| 2.5102 | 9.0 | 2709 | 2.2349 | |
|
| 2.5063 | 10.0 | 3010 | 2.2288 | |
|
| 2.4953 | 11.0 | 3311 | 2.2242 | |
|
| 2.4926 | 12.0 | 3612 | 2.2192 | |
|
| 2.4786 | 13.0 | 3913 | 2.2154 | |
|
| 2.472 | 14.0 | 4214 | 2.2117 | |
|
| 2.4662 | 15.0 | 4515 | 2.2079 | |
|
| 2.4553 | 16.0 | 4816 | 2.2051 | |
|
| 2.4472 | 17.0 | 5117 | 2.2020 | |
|
| 2.4488 | 18.0 | 5418 | 2.2008 | |
|
| 2.4367 | 19.0 | 5719 | 2.1972 | |
|
| 2.4353 | 20.0 | 6020 | 2.1952 | |
|
| 2.429 | 21.0 | 6321 | 2.1934 | |
|
| 2.4247 | 22.0 | 6622 | 2.1912 | |
|
| 2.4242 | 23.0 | 6923 | 2.1901 | |
|
| 2.4196 | 24.0 | 7224 | 2.1887 | |
|
| 2.4169 | 25.0 | 7525 | 2.1873 | |
|
| 2.4122 | 26.0 | 7826 | 2.1862 | |
|
| 2.4089 | 27.0 | 8127 | 2.1851 | |
|
| 2.4042 | 28.0 | 8428 | 2.1841 | |
|
| 2.4061 | 29.0 | 8729 | 2.1831 | |
|
| 2.4007 | 30.0 | 9030 | 2.1823 | |
|
| 2.397 | 31.0 | 9331 | 2.1814 | |
|
| 2.3998 | 32.0 | 9632 | 2.1810 | |
|
| 2.3963 | 33.0 | 9933 | 2.1805 | |
|
| 2.3976 | 34.0 | 10234 | 2.1798 | |
|
| 2.3919 | 35.0 | 10535 | 2.1794 | |
|
| 2.3873 | 36.0 | 10836 | 2.1793 | |
|
| 2.3899 | 37.0 | 11137 | 2.1789 | |
|
| 2.3886 | 38.0 | 11438 | 2.1786 | |
|
| 2.3906 | 39.0 | 11739 | 2.1786 | |
|
| 2.393 | 40.0 | 12040 | 2.1785 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.55.2 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.4 |
|
|