Zhangchen Xu
End of training
929a392 verified
|
raw
history blame
3.68 kB
metadata
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: Llama-3.1-8B-Magpie-Mix-300KMT-150KR
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1


base_model: /data/zhangchen_xu/model/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Magpie-Align/Magpie-Reasoning-150K
    type: sharegpt
    conversation: llama3
  - path: Magpie-Align/Magpie-Pro-MT-300K-v0.1
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: /data/zhangchen_xu/axolotl_out/Llama-3.1-8B-Mix-SFT

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3.1-8B-Mix-SFT
wandb_log_model:
hub_model_id: Magpie-Align/Llama-3.1-8B-Magpie-Mix-300KMT-150KR

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

Visualize in Weights & Biases

Llama-3.1-8B-Magpie-Mix-300KMT-150KR

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 79
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.7863 0.0024 1 0.7710
0.5422 0.2007 85 0.4937
0.476 0.4014 170 0.4382
0.4594 0.6021 255 0.4174
0.4383 0.8028 340 0.4057
0.4397 1.0035 425 0.3978
0.3927 1.1845 510 0.3956
0.3895 1.3852 595 0.3934
0.3832 1.5859 680 0.3925
0.3957 1.7866 765 0.3924

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1