|
--- |
|
library_name: transformers |
|
datasets: |
|
- MrBinit/Nepali-Language-Text |
|
language: |
|
- ne |
|
- en |
|
base_model: |
|
- meta-llama/Llama-3.2-3B-Instruct |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
|
|
``` from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_path = "" |
|
|
|
# Load the tokenizer and set the padding token to the eos_token. |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
).to("cuda") |
|
|
|
def generate_response(user_input): |
|
instruction = """You are chatbot proficient in Nepalese Language.""" |
|
|
|
messages = [ |
|
{"role": "system", "content": instruction}, |
|
{"role": "user", "content": user_input} |
|
] |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True).to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=500, num_return_sequences=1) |
|
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response_text.split("assistant")[1].strip() |
|
|
|
user_query = "राणा शासनले नेपाल कसरी कब्जा गर्यो भनेर व्याख्या गर्न सक्नुहुन्छ?" |
|
response = generate_response(user_query) |
|
print("Chatbot:", response) |
|
``` |
|
|
|
|