Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2469150
# FRED ML - Enterprise Economic Analytics Platform | |
A comprehensive, enterprise-grade Machine Learning system for analyzing Federal Reserve Economic Data (FRED) with automated data processing, advanced analytics, and interactive visualizations. | |
## 🏢 Enterprise Features | |
### 🚀 Core Capabilities | |
- **📊 Real-time Data Processing**: Automated FRED API integration with enhanced client | |
- **🔍 Data Quality Assessment**: Comprehensive data validation and quality metrics | |
- **🔄 Automated Workflows**: CI/CD pipeline with quality gates | |
- **☁️ Cloud-Native**: AWS Lambda and S3 integration | |
- **🧪 Comprehensive Testing**: Unit, integration, and E2E tests | |
- **🔒 Security**: Enterprise-grade security with audit logging | |
- **📈 Performance**: Optimized for high-throughput data processing | |
- **🛡️ Reliability**: Robust error handling and recovery mechanisms | |
### 🤖 Advanced Analytics | |
- **📊 Statistical Modeling**: | |
- Linear regression with lagged variables | |
- Correlation analysis (Pearson, Spearman, Kendall) | |
- Granger causality testing | |
- Comprehensive diagnostic testing (normality, homoscedasticity, autocorrelation, multicollinearity) | |
- Principal Component Analysis (PCA) | |
- **🔮 Time Series Forecasting**: | |
- ARIMA models with automatic order selection | |
- Exponential Smoothing (ETS) models | |
- Stationarity testing (ADF, KPSS) | |
- Time series decomposition (trend, seasonal, residual) | |
- Backtesting with performance metrics (MAE, RMSE, MAPE) | |
- Confidence intervals and uncertainty quantification | |
- **🎯 Economic Segmentation**: | |
- Time period clustering (economic regimes) | |
- Series clustering (behavioral patterns) | |
- K-means and hierarchical clustering | |
- Optimal cluster detection (elbow method, silhouette analysis) | |
- Dimensionality reduction (PCA, t-SNE) | |
- **📈 Interactive Visualizations**: Dynamic charts and dashboards | |
- **💡 Comprehensive Insights**: Automated insights extraction and key findings identification | |
## 📁 Enterprise Project Structure | |
``` | |
FRED_ML/ | |
├── 📁 src/ # Core application code | |
│ ├── 📁 core/ # Core pipeline components | |
│ ├── 📁 analysis/ # Economic analysis modules | |
│ ├── 📁 visualization/ # Data visualization components | |
│ └── 📁 lambda/ # AWS Lambda functions | |
├── 📁 tests/ # Enterprise test suite | |
│ ├── 📁 unit/ # Unit tests | |
│ ├── 📁 integration/ # Integration tests | |
│ ├── 📁 e2e/ # End-to-end tests | |
│ └── 📄 run_tests.py # Comprehensive test runner | |
├── 📁 scripts/ # Enterprise automation scripts | |
│ ├── 📄 cleanup_redundant_files.py # Project cleanup | |
│ ├── 📄 deploy_complete.py # Complete deployment | |
│ └── 📄 health_check.py # System health monitoring | |
├── 📁 config/ # Enterprise configuration | |
│ └── 📄 settings.py # Centralized configuration management | |
├── 📁 docs/ # Comprehensive documentation | |
│ ├── 📁 api/ # API documentation | |
│ ├── 📁 architecture/ # System architecture docs | |
│ └── 📄 CONVERSATION_SUMMARY.md | |
├── 📁 data/ # Data storage | |
│ ├── 📁 raw/ # Raw data files | |
│ ├── 📁 processed/ # Processed data | |
│ └── 📁 exports/ # Generated exports | |
├── 📁 deploy/ # Deployment configurations | |
│ ├── 📁 docker/ # Docker configurations | |
│ ├── 📁 kubernetes/ # Kubernetes manifests | |
│ └── 📁 helm/ # Helm charts | |
├── 📁 infrastructure/ # Infrastructure as code | |
│ ├── 📁 ci-cd/ # CI/CD configurations | |
│ ├── 📁 monitoring/ # Monitoring setup | |
│ └── 📁 alerts/ # Alert configurations | |
├── 📁 .github/workflows/ # GitHub Actions workflows | |
├── 📄 requirements.txt # Python dependencies | |
├── 📄 pyproject.toml # Project configuration | |
├── 📄 Dockerfile # Container configuration | |
├── 📄 Makefile # Enterprise build automation | |
└── 📄 README.md # This file | |
``` | |
## 🛠️ Enterprise Quick Start | |
### Prerequisites | |
- Python 3.9+ | |
- AWS Account (for cloud features) | |
- FRED API Key | |
- Docker (optional, for containerized deployment) | |
### Installation | |
1. **Clone the repository** | |
```bash | |
git clone https://github.com/your-org/FRED_ML.git | |
cd FRED_ML | |
``` | |
2. **Set up development environment** | |
```bash | |
# Complete setup with all dependencies | |
make setup | |
# Or manual setup | |
python -m venv .venv | |
source .venv/bin/activate # On Windows: .venv\Scripts\activate | |
pip install -r requirements.txt | |
pip install -e . | |
``` | |
3. **Configure environment variables** | |
```bash | |
export FRED_API_KEY="your_fred_api_key" | |
export AWS_ACCESS_KEY_ID="your_aws_access_key" | |
export AWS_SECRET_ACCESS_KEY="your_aws_secret_key" | |
export AWS_DEFAULT_REGION="us-east-1" | |
export ENVIRONMENT="development" # or "production" | |
``` | |
4. **Validate configuration** | |
```bash | |
make config-validate | |
``` | |
5. **Run comprehensive tests** | |
```bash | |
make test | |
``` | |
## 🧪 Enterprise Testing | |
### Run all tests | |
```bash | |
make test | |
``` | |
### Run specific test types | |
```bash | |
# Unit tests only | |
make test-unit | |
# Integration tests only | |
make test-integration | |
# End-to-end tests only | |
make test-e2e | |
# Tests with coverage | |
make test-coverage | |
``` | |
### Quality Assurance | |
```bash | |
# Full QA suite (linting, formatting, type checking, tests) | |
make qa | |
# Pre-commit checks | |
make pre-commit | |
``` | |
## 🚀 Enterprise Deployment | |
### Local Development | |
```bash | |
# Start development environment | |
make dev | |
# Start local development server | |
make dev-local | |
``` | |
### Production Deployment | |
```bash | |
# Production environment | |
make prod | |
# Deploy to AWS | |
make deploy-aws | |
# Deploy to Streamlit Cloud | |
make deploy-streamlit | |
``` | |
### Docker Deployment | |
```bash | |
# Build Docker image | |
make build-docker | |
# Run with Docker | |
docker run -p 8501:8501 fred-ml:latest | |
``` | |
## 📊 Enterprise Monitoring | |
### Health Checks | |
```bash | |
# System health check | |
make health | |
# View application logs | |
make logs | |
# Clear application logs | |
make logs-clear | |
``` | |
### Performance Monitoring | |
```bash | |
# Performance tests | |
make performance-test | |
# Performance profiling | |
make performance-profile | |
``` | |
### Security Audits | |
```bash | |
# Security scan | |
make security-scan | |
# Security audit | |
make security-audit | |
``` | |
## 🔧 Enterprise Configuration | |
### Configuration Management | |
The project uses a centralized configuration system in `config/settings.py`: | |
```python | |
from config.settings import get_config | |
config = get_config() | |
fred_api_key = config.get_fred_api_key() | |
aws_credentials = config.get_aws_credentials() | |
``` | |
### Environment Variables | |
- `FRED_API_KEY`: Your FRED API key | |
- `AWS_ACCESS_KEY_ID`: AWS access key for cloud features | |
- `AWS_SECRET_ACCESS_KEY`: AWS secret key | |
- `ENVIRONMENT`: Set to 'production' for production mode | |
- `LOG_LEVEL`: Logging level (DEBUG, INFO, WARNING, ERROR) | |
- `DB_HOST`, `DB_PORT`, `DB_NAME`, `DB_USER`, `DB_PASSWORD`: Database configuration | |
## 📈 Enterprise Analytics | |
### Running Analytics Pipeline | |
```bash | |
# Run complete analytics pipeline | |
make analytics-run | |
# Clear analytics cache | |
make analytics-cache-clear | |
``` | |
### Custom Analytics | |
```python | |
from src.analysis.comprehensive_analytics import ComprehensiveAnalytics | |
analytics = ComprehensiveAnalytics(api_key="your_key") | |
results = analytics.run_complete_analysis() | |
``` | |
## 🛡️ Enterprise Security | |
### Security Features | |
- **API Rate Limiting**: Configurable rate limits for API calls | |
- **Audit Logging**: Comprehensive audit trail for all operations | |
- **SSL/TLS**: Secure communication protocols | |
- **Input Validation**: Robust input validation and sanitization | |
- **Error Handling**: Secure error handling without information leakage | |
### Security Best Practices | |
- All API keys stored as environment variables | |
- No hardcoded credentials in source code | |
- Regular security audits and dependency updates | |
- Comprehensive logging for security monitoring | |
## 📊 Enterprise Performance | |
### Performance Optimizations | |
- **Caching**: Intelligent caching of frequently accessed data | |
- **Parallel Processing**: Multi-threaded data processing | |
- **Memory Management**: Efficient memory usage and garbage collection | |
- **Database Optimization**: Optimized database queries and connections | |
- **CDN Integration**: Content delivery network for static assets | |
### Performance Monitoring | |
- Real-time performance metrics | |
- Automated performance testing | |
- Resource usage monitoring | |
- Scalability testing | |
## 🔄 Enterprise CI/CD | |
### Automated Workflows | |
- **Quality Gates**: Automated quality checks before deployment | |
- **Testing**: Comprehensive test suite execution | |
- **Security Scanning**: Automated security vulnerability scanning | |
- **Performance Testing**: Automated performance regression testing | |
- **Deployment**: Automated deployment to multiple environments | |
### GitHub Actions | |
The project includes comprehensive GitHub Actions workflows: | |
- Automated testing on pull requests | |
- Security scanning and vulnerability assessment | |
- Performance testing and monitoring | |
- Automated deployment to staging and production | |
## 📚 Enterprise Documentation | |
### Documentation Structure | |
- **API Documentation**: Comprehensive API reference | |
- **Architecture Documentation**: System design and architecture | |
- **Deployment Guides**: Step-by-step deployment instructions | |
- **Troubleshooting**: Common issues and solutions | |
- **Performance Tuning**: Optimization guidelines | |
### Generating Documentation | |
```bash | |
# Generate documentation | |
make docs | |
# Serve documentation locally | |
make docs-serve | |
``` | |
## 🤝 Enterprise Support | |
### Getting Help | |
- **Documentation**: Comprehensive documentation in `/docs` | |
- **Issues**: Report bugs and feature requests via GitHub Issues | |
- **Discussions**: Community discussions via GitHub Discussions | |
- **Security**: Report security vulnerabilities via GitHub Security | |
### Contributing | |
1. Fork the repository | |
2. Create a feature branch | |
3. Make your changes | |
4. Run the full test suite: `make test` | |
5. Submit a pull request | |
### Code Quality Standards | |
- **Linting**: Automated code linting with flake8 | |
- **Formatting**: Consistent code formatting with black and isort | |
- **Type Checking**: Static type checking with mypy | |
- **Testing**: Comprehensive test coverage requirements | |
- **Documentation**: Inline documentation and docstrings | |
## 📄 License | |
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details. | |
## 🙏 Acknowledgments | |
- Federal Reserve Economic Data (FRED) for providing the economic data API | |
- Streamlit for the interactive web framework | |
- The open-source community for various libraries and tools | |
## 📞 Contact | |
For enterprise support and inquiries: | |
- **Email**: [email protected] | |
- **Documentation**: https://docs.your-org.com/fred-ml | |
- **Issues**: https://github.com/your-org/FRED_ML/issues | |
--- | |
**FRED ML** - Enterprise Economic Analytics Platform | |
*Version 2.0.1 - Enterprise Grade* | |