kpi-priority-model
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.7414
Accuracy: 0.7288
F1: 0.7266
Classification Report: precision recall f1-score support
Low 0.68 0.83 0.75 94 Medium 0.66 0.52 0.58 111 High 0.69 0.73 0.71 202
Critical 0.81 0.78 0.80 253
accuracy 0.73 660 macro avg 0.71 0.72 0.71 660
weighted avg 0.73 0.73 0.73 660
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Classification Report |
---|---|---|---|---|---|---|
2.3852 | 1.0 | 165 | 0.8176 | 0.6833 | 0.6838 | precision recall f1-score support |
Low 0.65 0.85 0.74 94
Medium 0.55 0.55 0.55 111
High 0.62 0.78 0.69 202
Critical 0.88 0.60 0.72 253
accuracy 0.68 660
macro avg 0.68 0.70 0.67 660 weighted avg 0.71 0.68 0.68 660 | | 1.3946 | 2.0 | 330 | 0.7414 | 0.7288 | 0.7266 | precision recall f1-score support
Low 0.68 0.83 0.75 94
Medium 0.66 0.52 0.58 111
High 0.69 0.73 0.71 202
Critical 0.81 0.78 0.80 253
accuracy 0.73 660
macro avg 0.71 0.72 0.71 660 weighted avg 0.73 0.73 0.73 660 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Model tree for Preet/kpi-priority-model
Base model
answerdotai/ModernBERT-base