Model save
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: answerdotai/ModernBERT-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: kpi-priority-model
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# kpi-priority-model
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7414
|
23 |
+
- Accuracy: 0.7288
|
24 |
+
- F1: 0.7266
|
25 |
+
- Classification Report: precision recall f1-score support
|
26 |
+
|
27 |
+
Low 0.68 0.83 0.75 94
|
28 |
+
Medium 0.66 0.52 0.58 111
|
29 |
+
High 0.69 0.73 0.71 202
|
30 |
+
Critical 0.81 0.78 0.80 253
|
31 |
+
|
32 |
+
accuracy 0.73 660
|
33 |
+
macro avg 0.71 0.72 0.71 660
|
34 |
+
weighted avg 0.73 0.73 0.73 660
|
35 |
+
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 8
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 16
|
60 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 100
|
63 |
+
- num_epochs: 2
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Classification Report |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
69 |
+
| 2.3852 | 1.0 | 165 | 0.8176 | 0.6833 | 0.6838 | precision recall f1-score support
|
70 |
+
|
71 |
+
Low 0.65 0.85 0.74 94
|
72 |
+
Medium 0.55 0.55 0.55 111
|
73 |
+
High 0.62 0.78 0.69 202
|
74 |
+
Critical 0.88 0.60 0.72 253
|
75 |
+
|
76 |
+
accuracy 0.68 660
|
77 |
+
macro avg 0.68 0.70 0.67 660
|
78 |
+
weighted avg 0.71 0.68 0.68 660
|
79 |
+
|
|
80 |
+
| 1.3946 | 2.0 | 330 | 0.7414 | 0.7288 | 0.7266 | precision recall f1-score support
|
81 |
+
|
82 |
+
Low 0.68 0.83 0.75 94
|
83 |
+
Medium 0.66 0.52 0.58 111
|
84 |
+
High 0.69 0.73 0.71 202
|
85 |
+
Critical 0.81 0.78 0.80 253
|
86 |
+
|
87 |
+
accuracy 0.73 660
|
88 |
+
macro avg 0.71 0.72 0.71 660
|
89 |
+
weighted avg 0.73 0.73 0.73 660
|
90 |
+
|
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.49.0.dev0
|
96 |
+
- Pytorch 2.5.1+cu121
|
97 |
+
- Datasets 3.2.0
|
98 |
+
- Tokenizers 0.21.0
|