Preet commited on
Commit
cbe52c0
·
verified ·
1 Parent(s): d42e53e

Model save

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: answerdotai/ModernBERT-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: kpi-priority-model
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # kpi-priority-model
19
+
20
+ This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7414
23
+ - Accuracy: 0.7288
24
+ - F1: 0.7266
25
+ - Classification Report: precision recall f1-score support
26
+
27
+ Low 0.68 0.83 0.75 94
28
+ Medium 0.66 0.52 0.58 111
29
+ High 0.69 0.73 0.71 202
30
+ Critical 0.81 0.78 0.80 253
31
+
32
+ accuracy 0.73 660
33
+ macro avg 0.71 0.72 0.71 660
34
+ weighted avg 0.73 0.73 0.73 660
35
+
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 16
60
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 100
63
+ - num_epochs: 2
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Classification Report |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
69
+ | 2.3852 | 1.0 | 165 | 0.8176 | 0.6833 | 0.6838 | precision recall f1-score support
70
+
71
+ Low 0.65 0.85 0.74 94
72
+ Medium 0.55 0.55 0.55 111
73
+ High 0.62 0.78 0.69 202
74
+ Critical 0.88 0.60 0.72 253
75
+
76
+ accuracy 0.68 660
77
+ macro avg 0.68 0.70 0.67 660
78
+ weighted avg 0.71 0.68 0.68 660
79
+ |
80
+ | 1.3946 | 2.0 | 330 | 0.7414 | 0.7288 | 0.7266 | precision recall f1-score support
81
+
82
+ Low 0.68 0.83 0.75 94
83
+ Medium 0.66 0.52 0.58 111
84
+ High 0.69 0.73 0.71 202
85
+ Critical 0.81 0.78 0.80 253
86
+
87
+ accuracy 0.73 660
88
+ macro avg 0.71 0.72 0.71 660
89
+ weighted avg 0.73 0.73 0.73 660
90
+ |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.49.0.dev0
96
+ - Pytorch 2.5.1+cu121
97
+ - Datasets 3.2.0
98
+ - Tokenizers 0.21.0