language:
- en
base_model:
- deepseek-ai/DeepSeek-R1-0528
pipeline_tag: text-generation
tags:
- deepseek_v3
- deepseek
- neuralmagic
- redhat
- llmcompressor
- quantized
- INT4
- GPTQ
- conversational
- compressed-tensors
license: mit
license_name: mit
name: RedHatAI/DeepSeek-R1-0528-quantized.w4a16
description: >-
This model was obtained by quantizing weights of DeepSeek-R1-0528 to INT4 data
type.
readme: >-
https://huggingface.co/RedHatAI/DeepSeek-R1-0528-quantized.w4a16/main/README.md
tasks:
- text-to-text
provider: DeepSeek
license_link: https://choosealicense.com/licenses/mit/
validated_on:
- RHOAI 2.24
- RHAIIS 3.2.1
DeepSeek-R1-0528-quantized.w4a16

Model Overview
- Model Architecture: DeepseekV3ForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Activation quantization: None
- Weight quantization: INT4
- Release Date: 05/30/2025
- Version: 1.0
- Validated on: RHOAI 2.24, RHAIIS 3.2.1
- Model Developers: Red Hat (Neural Magic)
Model Optimizations
This model was obtained by quantizing weights of DeepSeek-R1-0528 to INT4 data type. This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%). Weight quantization also reduces disk size requirements by approximately 50%.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/DeepSeek-R1-0528-quantized.w4a16"
number_gpus = 8
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Deploy on Red Hat AI Inference Server
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/DeepSeek-R1-0528-quantized.w4a16
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.24-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.24-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: DeepSeek-R1-0528-quantized.w4a16 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: DeepSeek-R1-0528-quantized.w4a16 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-deepseek-r1-0528-quantized-w4a16:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "DeepSeek-R1-0528-quantized.w4a16",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
Creation
We created this model using MoE-Quant, a library developed jointly with ISTA and tailored for the quantization of very large Mixture-of-Experts (MoE) models.
For more details, please refer to the MoE-Quant repository.
Evaluation
The model was evaluated on popular reasoning tasks (AIME 2024, MATH-500, GPQA-Diamond) via LightEval.
For reasoning evaluations, we estimate pass@1 based on 10 runs with different seeds, temperature=0.6
, top_p=0.95
and max_new_tokens=65536
.
Accuracy
Recovery (%) | deepseek/DeepSeek-R1-0528 | RedHatAI/DeepSeek-R1-0528-quantized.w4a16 (this model) |
|
---|---|---|---|
AIME 2024 pass@1 |
98.50 | 88.66 | 87.33 |
MATH-500 pass@1 |
99.88 | 97.52 | 97.40 |
GPQA Diamond pass@1 |
101.21 | 79.65 | 80.61 |
Reasoning Average Score |
99.82 | 88.61 | 88.45 |