|
--- |
|
language: |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- pt |
|
- hi |
|
- es |
|
- th |
|
base_model: |
|
- meta-llama/Llama-3.1-8B-Instruct |
|
pipeline_tag: text-generation |
|
tags: |
|
- llama |
|
- facebook |
|
- meta |
|
- llama-3 |
|
- int8 |
|
- vllm |
|
- chat |
|
- neuralmagic |
|
- llmcompressor |
|
- conversational |
|
- 8-bit precision |
|
- compressed-tensors |
|
license: llama3.1 |
|
license_name: llama3.1 |
|
name: RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 |
|
description: This model was obtained by quantizing the weights and activations of Meta-Llama-3.1-8B-Instruct to INT8 data type. |
|
readme: https://huggingface.co/RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8/main/README.md |
|
tasks: |
|
- text-to-text |
|
provider: Meta |
|
license_link: https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE |
|
validated_on: |
|
- RHOAI 2.20 |
|
- RHAIIS 3.0 |
|
- RHELAI 1.5 |
|
--- |
|
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> |
|
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 |
|
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> |
|
</h1> |
|
|
|
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> |
|
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> |
|
</a> |
|
|
|
## Model Overview |
|
- **Model Architecture:** Meta-Llama-3 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Activation quantization:** INT8 |
|
- **Weight quantization:** INT8 |
|
- **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). |
|
- **Release Date:** 7/11/2024 |
|
- **Version:** 1.0 |
|
- **Validated on:** RHOAI 2.20, RHAIIS 3.0, RHELAI 1.5 |
|
- **License(s):** Llama3.1 |
|
- **Model Developers:** Neural Magic |
|
|
|
This model is a quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). |
|
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation. |
|
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 achieves 105.4% recovery for the Arena-Hard evaluation, 100.3% for OpenLLM v1 (using Meta's prompting when available), 101.5% for OpenLLM v2, 99.7% for HumanEval pass@1, and 98.8% for HumanEval+ pass@1. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT8 data type. |
|
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). |
|
Weight quantization also reduces disk size requirements by approximately 50%. |
|
|
|
Only weights and activations of the linear operators within transformers blocks are quantized. |
|
Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension. |
|
Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations. |
|
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. |
|
GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens. |
|
|
|
|
|
## Deployment |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8" |
|
number_gpus = 1 |
|
max_model_len = 8192 |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> |
|
|
|
```bash |
|
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ |
|
--ipc=host \ |
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ |
|
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ |
|
--name=vllm \ |
|
registry.access.redhat.com/rhaiis/rh-vllm-cuda \ |
|
vllm serve \ |
|
--tensor-parallel-size 8 \ |
|
--max-model-len 32768 \ |
|
--enforce-eager --model RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 |
|
``` |
|
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details. |
|
</details> |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary> |
|
|
|
```bash |
|
# Download model from Red Hat Registry via docker |
|
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. |
|
ilab model download --repository docker://registry.redhat.io/rhelai1/llama-3-1-8b-instruct-quantized-w8a8:1.5 |
|
``` |
|
|
|
```bash |
|
# Serve model via ilab |
|
ilab model serve --model-path ~/.cache/instructlab/models/llama-3-1-8b-instruct-quantized-w8a8 |
|
|
|
# Chat with model |
|
ilab model chat --model ~/.cache/instructlab/models/llama-3-1-8b-instruct-quantized-w8a8 |
|
``` |
|
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details. |
|
</details> |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> |
|
|
|
```python |
|
# Setting up vllm server with ServingRuntime |
|
# Save as: vllm-servingruntime.yaml |
|
apiVersion: serving.kserve.io/v1alpha1 |
|
kind: ServingRuntime |
|
metadata: |
|
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name |
|
annotations: |
|
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe |
|
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' |
|
labels: |
|
opendatahub.io/dashboard: 'true' |
|
spec: |
|
annotations: |
|
prometheus.io/port: '8080' |
|
prometheus.io/path: '/metrics' |
|
multiModel: false |
|
supportedModelFormats: |
|
- autoSelect: true |
|
name: vLLM |
|
containers: |
|
- name: kserve-container |
|
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm |
|
command: |
|
- python |
|
- -m |
|
- vllm.entrypoints.openai.api_server |
|
args: |
|
- "--port=8080" |
|
- "--model=/mnt/models" |
|
- "--served-model-name={{.Name}}" |
|
env: |
|
- name: HF_HOME |
|
value: /tmp/hf_home |
|
ports: |
|
- containerPort: 8080 |
|
protocol: TCP |
|
``` |
|
|
|
```python |
|
# Attach model to vllm server. This is an NVIDIA template |
|
# Save as: inferenceservice.yaml |
|
apiVersion: serving.kserve.io/v1beta1 |
|
kind: InferenceService |
|
metadata: |
|
annotations: |
|
openshift.io/display-name: llama-3-1-8b-instruct-quantized-w8a8 # OPTIONAL CHANGE |
|
serving.kserve.io/deploymentMode: RawDeployment |
|
name: llama-3-1-8b-instruct-quantized-w8a8 # specify model name. This value will be used to invoke the model in the payload |
|
labels: |
|
opendatahub.io/dashboard: 'true' |
|
spec: |
|
predictor: |
|
maxReplicas: 1 |
|
minReplicas: 1 |
|
model: |
|
modelFormat: |
|
name: vLLM |
|
name: '' |
|
resources: |
|
limits: |
|
cpu: '2' # this is model specific |
|
memory: 8Gi # this is model specific |
|
nvidia.com/gpu: '1' # this is accelerator specific |
|
requests: # same comment for this block |
|
cpu: '1' |
|
memory: 4Gi |
|
nvidia.com/gpu: '1' |
|
runtime: vllm-cuda-runtime # must match the ServingRuntime name above |
|
storageUri: oci://registry.redhat.io/rhelai1/modelcar-llama-3-1-8b-instruct-quantized-w8a8:1.5 |
|
tolerations: |
|
- effect: NoSchedule |
|
key: nvidia.com/gpu |
|
operator: Exists |
|
``` |
|
|
|
```bash |
|
# make sure first to be in the project where you want to deploy the model |
|
# oc project <project-name> |
|
|
|
# apply both resources to run model |
|
|
|
# Apply the ServingRuntime |
|
oc apply -f vllm-servingruntime.yaml |
|
|
|
# Apply the InferenceService |
|
oc apply -f qwen-inferenceservice.yaml |
|
``` |
|
|
|
```python |
|
# Replace <inference-service-name> and <cluster-ingress-domain> below: |
|
# - Run `oc get inferenceservice` to find your URL if unsure. |
|
|
|
# Call the server using curl: |
|
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions |
|
-H "Content-Type: application/json" \ |
|
-d '{ |
|
"model": "llama-3-1-8b-instruct-quantized-w8a8", |
|
"stream": true, |
|
"stream_options": { |
|
"include_usage": true |
|
}, |
|
"max_tokens": 1, |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": "How can a bee fly when its wings are so small?" |
|
} |
|
] |
|
}' |
|
|
|
``` |
|
|
|
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. |
|
</details> |
|
|
|
|
|
## Creation |
|
|
|
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from datasets import Dataset |
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
import random |
|
|
|
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" |
|
|
|
num_samples = 256 |
|
max_seq_len = 8192 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
max_token_id = len(tokenizer.get_vocab()) - 1 |
|
input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)] |
|
attention_mask = num_samples * [max_seq_len * [1]] |
|
ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask}) |
|
|
|
recipe = GPTQModifier( |
|
targets="Linear", |
|
scheme="W8A8", |
|
ignore=["lm_head"], |
|
dampening_frac=0.01, |
|
) |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
) |
|
|
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
num_calibration_samples=num_samples, |
|
) |
|
|
|
model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w8a8") |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks. |
|
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine. |
|
|
|
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository. |
|
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4. |
|
We report below the scores obtained in each judgement and the average. |
|
|
|
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct). |
|
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals) and a few fixes to OpenLLM v2 tasks. |
|
|
|
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository. |
|
|
|
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals). |
|
|
|
**Note:** Results have been updated after Meta modified the chat template. |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<tr> |
|
<td><strong>Category</strong> |
|
</td> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Meta-Llama-3.1-8B-Instruct </strong> |
|
</td> |
|
<td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w8a8 (this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="1" ><strong>LLM as a judge</strong> |
|
</td> |
|
<td>Arena Hard |
|
</td> |
|
<td>25.8 (25.1 / 26.5) |
|
</td> |
|
<td>27.2 (27.6 / 26.7) |
|
</td> |
|
<td>105.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="8" ><strong>OpenLLM v1</strong> |
|
</td> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>68.3 |
|
</td> |
|
<td>67.8 |
|
</td> |
|
<td>99.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (CoT, 0-shot) |
|
</td> |
|
<td>72.8 |
|
</td> |
|
<td>72.2 |
|
</td> |
|
<td>99.1% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (0-shot) |
|
</td> |
|
<td>81.4 |
|
</td> |
|
<td>81.7 |
|
</td> |
|
<td>100.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (CoT, 8-shot, strict-match) |
|
</td> |
|
<td>82.8 |
|
</td> |
|
<td>84.8 |
|
</td> |
|
<td>102.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>80.5 |
|
</td> |
|
<td>80.3 |
|
</td> |
|
<td>99.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>78.1 |
|
</td> |
|
<td>78.5 |
|
</td> |
|
<td>100.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot, mc2) |
|
</td> |
|
<td>54.5 |
|
</td> |
|
<td>54.7 |
|
</td> |
|
<td>100.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>74.1</strong> |
|
</td> |
|
<td><strong>74.3</strong> |
|
</td> |
|
<td><strong>100.3%</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="7" ><strong>OpenLLM v2</strong> |
|
</td> |
|
<td>MMLU-Pro (5-shot) |
|
</td> |
|
<td>30.8 |
|
</td> |
|
<td>30.9 |
|
</td> |
|
<td>100.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>IFEval (0-shot) |
|
</td> |
|
<td>77.9 |
|
</td> |
|
<td>78.0 |
|
</td> |
|
<td>100.1% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>BBH (3-shot) |
|
</td> |
|
<td>30.1 |
|
</td> |
|
<td>31.0 |
|
</td> |
|
<td>102.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Math-lvl-5 (4-shot) |
|
</td> |
|
<td>15.7 |
|
</td> |
|
<td>15.5 |
|
</td> |
|
<td>98.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA (0-shot) |
|
</td> |
|
<td>3.7 |
|
</td> |
|
<td>5.4 |
|
</td> |
|
<td>146.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MuSR (0-shot) |
|
</td> |
|
<td>7.6 |
|
</td> |
|
<td>7.6 |
|
</td> |
|
<td>100.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>27.6</strong> |
|
</td> |
|
<td><strong>28.0</strong> |
|
</td> |
|
<td><strong>101.5%</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2" ><strong>Coding</strong> |
|
</td> |
|
<td>HumanEval pass@1 |
|
</td> |
|
<td>67.3 |
|
</td> |
|
<td>67.1 |
|
</td> |
|
<td>99.7% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>HumanEval+ pass@1 |
|
</td> |
|
<td>60.7 |
|
</td> |
|
<td>60.0 |
|
</td> |
|
<td>98.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="9" ><strong>Multilingual</strong> |
|
</td> |
|
<td>Portuguese MMLU (5-shot) |
|
</td> |
|
<td>59.96 |
|
</td> |
|
<td>59.36 |
|
</td> |
|
<td>99.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Spanish MMLU (5-shot) |
|
</td> |
|
<td>60.25 |
|
</td> |
|
<td>59.77 |
|
</td> |
|
<td>99.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Italian MMLU (5-shot) |
|
</td> |
|
<td>59.23 |
|
</td> |
|
<td>58.61 |
|
</td> |
|
<td>99.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>German MMLU (5-shot) |
|
</td> |
|
<td>58.63 |
|
</td> |
|
<td>58.23 |
|
</td> |
|
<td>99.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>French MMLU (5-shot) |
|
</td> |
|
<td>59.65 |
|
</td> |
|
<td>58.70 |
|
</td> |
|
<td>98.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hindi MMLU (5-shot) |
|
</td> |
|
<td>50.10 |
|
</td> |
|
<td>49.33 |
|
</td> |
|
<td>98.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Thai MMLU (5-shot) |
|
</td> |
|
<td>49.12 |
|
</td> |
|
<td>48.09 |
|
</td> |
|
<td>97.9% |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
### Reproduction |
|
|
|
The results were obtained using the following commands: |
|
|
|
#### MMLU |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU-CoT |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \ |
|
--tasks mmlu_cot_0shot_llama_3.1_instruct \ |
|
--apply_chat_template \ |
|
--num_fewshot 0 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### ARC-Challenge |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \ |
|
--tasks arc_challenge_llama_3.1_instruct \ |
|
--apply_chat_template \ |
|
--num_fewshot 0 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### GSM-8K |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \ |
|
--tasks gsm8k_cot_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 8 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### Hellaswag |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ |
|
--tasks hellaswag \ |
|
--num_fewshot 10 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### Winogrande |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ |
|
--tasks winogrande \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### TruthfulQA |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ |
|
--tasks truthfulqa \ |
|
--num_fewshot 0 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### OpenLLM v2 |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks leaderboard \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU Portuguese |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_pt_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU Spanish |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_es_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU Italian |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_it_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU German |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_de_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU French |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_fr_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU Hindi |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_hi_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU Thai |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \ |
|
--tasks mmlu_th_llama_3.1_instruct \ |
|
--fewshot_as_multiturn \ |
|
--apply_chat_template \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### HumanEval and HumanEval+ |
|
##### Generation |
|
``` |
|
python3 codegen/generate.py \ |
|
--model neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 \ |
|
--bs 16 \ |
|
--temperature 0.2 \ |
|
--n_samples 50 \ |
|
--root "." \ |
|
--dataset humaneval |
|
``` |
|
##### Sanitization |
|
``` |
|
python3 evalplus/sanitize.py \ |
|
humaneval/neuralmagic--Meta-Llama-3.1-8B-Instruct-quantized.w8a8_vllm_temp_0.2 |
|
``` |
|
##### Evaluation |
|
``` |
|
evalplus.evaluate \ |
|
--dataset humaneval \ |
|
--samples humaneval/neuralmagic--Meta-Llama-3.1-8B-Instruct-quantized.w8a8_vllm_temp_0.2-sanitized |
|
``` |
|
|