| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						language: | 
					
					
						
						| 
							 | 
						- en | 
					
					
						
						| 
							 | 
						pipeline_tag: text-generation | 
					
					
						
						| 
							 | 
						license: llama2 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# gemma-2-9b-it-quantized.w4a16 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Model Overview | 
					
					
						
						| 
							 | 
						- **Model Architecture:** Gemma-2 | 
					
					
						
						| 
							 | 
						  - **Input:** Text | 
					
					
						
						| 
							 | 
						  - **Output:** Text | 
					
					
						
						| 
							 | 
						- **Model Optimizations:** | 
					
					
						
						| 
							 | 
						  - **Weight quantization:** INT4 | 
					
					
						
						| 
							 | 
						- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it), this models is intended for assistant-like chat. | 
					
					
						
						| 
							 | 
						- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. | 
					
					
						
						| 
							 | 
						- **Release Date:** 8/16/2024 | 
					
					
						
						| 
							 | 
						- **Version:** 1.0 | 
					
					
						
						| 
							 | 
						- **License(s)**: [LLama2](https://huggingface.co/google/gemma-2-9b-it/blob/main/LICENSE.txt) | 
					
					
						
						| 
							 | 
						- **Model Developers:** Neural Magic | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Quantized version of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). | 
					
					
						
						| 
							 | 
						It achieves an average score of 73.62 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.23. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Model Optimizations | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model was obtained by quantizing the weights of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) to INT4 data type. | 
					
					
						
						| 
							 | 
						This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights. | 
					
					
						
						| 
							 | 
						The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. Quantization is performed with 1% damping factor, group-size as 128 and 512 sequences sampled from [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Deployment | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Use with vLLM | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from vllm import LLM, SamplingParams | 
					
					
						
						| 
							 | 
						from transformers import AutoTokenizer | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_id = "neuralmagic/gemma-2-9b-it-quantized.w4a16" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						messages = [ | 
					
					
						
						| 
							 | 
						    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, | 
					
					
						
						| 
							 | 
						    {"role": "user", "content": "Who are you? Please respond in pirate speak."}, | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						llm = LLM(model=model_id, tensor_parallel_size=2) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						outputs = llm.generate(prompts, sampling_params) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						generated_text = outputs[0].outputs[0].text | 
					
					
						
						| 
							 | 
						print(generated_text) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Use with transformers | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The following example contemplates how the model can be deployed in Transformers using the `generate()` function. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from transformers import AutoTokenizer, AutoModelForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_id = "neuralmagic/gemma-2-9b-it-quantized.w4a16" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						model = AutoModelForCausalLM.from_pretrained( | 
					
					
						
						| 
							 | 
						    model_id, | 
					
					
						
						| 
							 | 
						    torch_dtype="auto", | 
					
					
						
						| 
							 | 
						    device_map="auto", | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						messages = [ | 
					
					
						
						| 
							 | 
						    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, | 
					
					
						
						| 
							 | 
						    {"role": "user", "content": "Who are you? Please respond in pirate speak"}, | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						input_ids = tokenizer.apply_chat_template( | 
					
					
						
						| 
							 | 
						    messages, | 
					
					
						
						| 
							 | 
						    add_generation_prompt=True, | 
					
					
						
						| 
							 | 
						    return_tensors="pt" | 
					
					
						
						| 
							 | 
						).to(model.device) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						terminators = [ | 
					
					
						
						| 
							 | 
						    tokenizer.eos_token_id, | 
					
					
						
						| 
							 | 
						    tokenizer.convert_tokens_to_ids("<|eot_id|>") | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						outputs = model.generate( | 
					
					
						
						| 
							 | 
						    input_ids, | 
					
					
						
						| 
							 | 
						    max_new_tokens=256, | 
					
					
						
						| 
							 | 
						    eos_token_id=terminators, | 
					
					
						
						| 
							 | 
						    do_sample=True, | 
					
					
						
						| 
							 | 
						    temperature=0.6, | 
					
					
						
						| 
							 | 
						    top_p=0.9, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						response = outputs[0][input_ids.shape[-1]:] | 
					
					
						
						| 
							 | 
						print(tokenizer.decode(response, skip_special_tokens=True)) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Creation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from transformers import AutoTokenizer | 
					
					
						
						| 
							 | 
						from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot | 
					
					
						
						| 
							 | 
						from llmcompressor.modifiers.quantization import GPTQModifier | 
					
					
						
						| 
							 | 
						from datasets import load_dataset | 
					
					
						
						| 
							 | 
						import random | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_id = "google/gemma-2-9b-it" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						num_samples = 512 | 
					
					
						
						| 
							 | 
						max_seq_len = 4096 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						dataset_name = "neuralmagic/LLM_compression_calibration" | 
					
					
						
						| 
							 | 
						dataset = load_dataset(dataset_name, split="train") | 
					
					
						
						| 
							 | 
						ds = dataset.shuffle().select(range(num_samples)) | 
					
					
						
						| 
							 | 
						ds = ds.map(preprocess_fn) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						examples = [ | 
					
					
						
						| 
							 | 
						    tokenizer( | 
					
					
						
						| 
							 | 
						        example["text"], padding=False, max_length=max_seq_len, truncation=True, | 
					
					
						
						| 
							 | 
						    ) for example in ds | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						recipe = GPTQModifier( | 
					
					
						
						| 
							 | 
						  targets="Linear", | 
					
					
						
						| 
							 | 
						  scheme="W4A16", | 
					
					
						
						| 
							 | 
						  ignore=["lm_head"], | 
					
					
						
						| 
							 | 
						  dampening_frac=0.01, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model = SparseAutoModelForCausalLM.from_pretrained( | 
					
					
						
						| 
							 | 
						  model_id, | 
					
					
						
						| 
							 | 
						  device_map="auto", | 
					
					
						
						| 
							 | 
						  trust_remote_code=True, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						oneshot( | 
					
					
						
						| 
							 | 
						  model=model, | 
					
					
						
						| 
							 | 
						  dataset=ds, | 
					
					
						
						| 
							 | 
						  recipe=recipe, | 
					
					
						
						| 
							 | 
						  max_seq_length=max_seq_len, | 
					
					
						
						| 
							 | 
						  num_calibration_samples=num_samples, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model.save_pretrained("gemma-2-9b-it-quantized.w4a16") | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Evaluation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						lm_eval \ | 
					
					
						
						| 
							 | 
						  --model vllm \ | 
					
					
						
						| 
							 | 
						  --model_args pretrained="neuralmagic/gemma-2-9b-it-quantized.w4a16",dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,trust_remote_code=True \ | 
					
					
						
						| 
							 | 
						  --tasks openllm \ | 
					
					
						
						| 
							 | 
						  --batch_size auto | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Accuracy | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#### Open LLM Leaderboard evaluation scores | 
					
					
						
						| 
							 | 
						<table> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td><strong>Benchmark</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>gemma-2-9b-it </strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>gemma-2-9b-it-quantized.w4a16(this model)</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>Recovery</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>MMLU (5-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>72.28 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>71.36 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>98.72% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>ARC Challenge (25-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>71.5 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>70.98 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.27% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>GSM-8K (5-shot, strict-match) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>76.26 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>79.83 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>104.68% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>Hellaswag (10-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>81.91 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>81.29 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.24% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>Winogrande (5-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>77.11 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>78.29 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>101.53% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>TruthfulQA (0-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>60.32 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>59.97 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.42% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td><strong>Average</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>73.23</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>73.62</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>100.53%</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						</table> |