nm-research's picture
Update README.md
c8b4ee2 verified
|
raw
history blame
10.2 kB
metadata
tags:
  - fp8
  - vllm
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: ibm-granite/granite-3.1-2b-instruct
library_name: transformers

granite-3.1-2b-instruct-FP8-dynamic

Model Overview

  • Model Architecture: granite-3.1-2b-instruct
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 1/8/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of ibm-granite/granite-3.1-2b-instruct. It achieves an average score of 61.84 on the OpenLLM benchmark (version 1), whereas the unquantized model achieves 61.98.

Model Optimizations

This model was obtained by quantizing the weights and activations of ibm-granite/granite-3.1-2b-instruct to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 1
model_name = "neuralmagic-ent/granite-3.1-2b-instruct-FP8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below.

python quantize.py --model_id ibm-granite/granite-3.1-2b-base --save_path "output_dir/"
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os

def main():
    parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
    parser.add_argument('--model_id', type=str, required=True,
                        help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-2b-Instruct")')
    parser.add_argument('--save_path', type=str, default='.',
                        help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
    args = parser.parse_args()

    # Load model
    model = AutoModelForCausalLM.from_pretrained(
        args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(args.model_id)

    # Configure the quantization algorithm and scheme
    recipe = QuantizationModifier(
        targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
    )

    # Apply quantization
    oneshot(model=model, recipe=recipe)

    save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
    os.makedirs(save_path, exist_ok=True)

    # Save to disk in compressed-tensors format
    model.save_pretrained(save_path)
    tokenizer.save_pretrained(save_path)
    print(f"Model and tokenizer saved to: {save_path}")

if __name__ == "__main__":
    main()

Evaluation

The model was evaluated on OpenLLM Leaderboard V1 and on HumanEval, using the following commands:

OpenLLM Leaderboard V1:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/granite-3.1-2b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

HumanEval

Generation
python3 codegen/generate.py \
  --model neuralmagic-ent/granite-3.1-2b-instruct-FP8-dynamic \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
  humaneval/neuralmagic-ent--granite-3.1-2b-instruct-FP8-dynamic_vllm_temp_0.2
Evaluation
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/neuralmagic-ent--granite-3.1-2b-instruct-FP8-dynamic_vllm_temp_0.2-sanitized

Accuracy

OpenLLM Leaderboard V1 evaluation scores

Metric ibm-granite/granite-3.1-2b-instruct neuralmagic-ent/granite-3.1-2b-instruct-FP8-dynamic
ARC-Challenge (Acc-Norm, 25-shot) 55.63 55.03
GSM8K (Strict-Match, 5-shot) 60.96 61.49
HellaSwag (Acc-Norm, 10-shot) 75.21 75.26
MMLU (Acc, 5-shot) 54.38 54.24
TruthfulQA (MC2, 0-shot) 55.93 55.42
Winogrande (Acc, 5-shot) 69.67 69.61
Average Score 61.98 61.84
Recovery 100.00 99.78
Metric ibm-granite/granite-3.1-2b-instruct neuralmagic-ent/granite-3.1-2b-instruct-FP8-dynamic
IFEval (Inst Level Strict Acc, 0-shot) 67.99 66.79
BBH (Acc-Norm, 3-shot) 44.11 44.24
Math-Hard (Exact-Match, 4-shot) 8.66 7.89
GPQA (Acc-Norm, 0-shot) 28.30 26.90
MUSR (Acc-Norm, 0-shot) 35.12 35.12
MMLU-Pro (Acc, 5-shot) 26.87 28.33
Average Score 35.17 34.88
Recovery 100.00 99.16

HumanEval pass@1 scores

Metric ibm-granite/granite-3.1-2b-instruct neuralmagic-ent/granite-3.1-2b-instruct-FP8-dynamic
HumanEval Pass@1 53.40 54.90

Inference Performance

This model achieves up to 1.2x speedup in single-stream deployment on L40 GPUs. The following performance benchmarks were conducted with vLLM version 0.6.6.post1, and GuideLLM.

Single-stream performance (measured with vLLM version 0.6.6.post1)

Latency (s)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
L40 granite-3.1-2b-instruct 9.3 1.2 9.4 1.2 1.2 2.3 5.0
granite-3.1-2b-instruct-FP8-dynamic
(this model)
1.26 7.3 0.9 7.4 1.0 0.9 1.8 4.1
granite-3.1-2b-instruct-quantized.w4a16 1.88 4.8 0.6 4.9 0.6 0.6 1.2 2.8