AnyLLM-Pro
					Collection
				
				6 items
				• 
				Updated
					
				•
					
					4
see our paper in https://arxiv.org/abs/2401.02415
View the project page: https://github.com/TencentARC/LLaMA-Pro
MetaMath-Mistral-Pro is fully fine-tuned on the MetaMathQA datasets and based on the powerful Mistral-Pro model.
The model is trained to use the following format (note the newlines):
<|user|>
Your message here!
<|assistant|>
For best results, format all inputs in this manner. Make sure to include a newline after <|assistant|>, this can affect generation quality quite a bit.
| Model | GSM8k Pass@1 | MATH Pass@1 | 
|---|---|---|
| MPT-7B | 6.8 | 3.0 | 
| Falcon-7B | 6.8 | 2.3 | 
| LLaMA-1-7B | 11.0 | 2.9 | 
| LLaMA-2-7B | 14.6 | 2.5 | 
| MPT-30B | 15.2 | 3.1 | 
| LLaMA-1-13B | 17.8 | 3.9 | 
| GPT-Neo-2.7B | 19.5 | -- | 
| Falcon-40B | 19.6 | 2.5 | 
| Baichuan-chat-13B | 23.9 | -- | 
| Vicuna-v1.3-13B | 27.6 | -- | 
| LLaMA-2-13B | 28.7 | 3.9 | 
| InternLM-7B | 31.2 | -- | 
| ChatGLM-2-6B | 32.4 | -- | 
| GPT-J-6B | 34.9 | -- | 
| LLaMA-1-33B | 35.6 | 3.9 | 
| LLaMA-2-34B | 42.2 | 6.24 | 
| RFT-7B | 50.3 | -- | 
| LLaMA-1-65B | 50.9 | 10.6 | 
| Qwen-7B | 51.6 | -- | 
| WizardMath-7B | 54.9 | 10.7 | 
| LLaMA-2-70B | 56.8 | 13.5 | 
| WizardMath-13B | 63.9 | 14.0 | 
| MAmmoTH-7B (COT) | 50.5 | 10.4 | 
| MAmmoTH-7B (POT+COT) | 53.6 | 31.5 | 
| Arithmo-Mistral-7B | 74.7 | 25.3 | 
| MetaMath-7B | 66.5 | 19.8 | 
| MetaMath-13B | 72.3 | 22.4 | 
| MetaMath-Mistral-7B | 77.7 | 28.2 | 
| MetaMath-Llemma-7B | 69.2 | 30.0 | 
| 🔥 MetaMath-Mistral-Pro | 78.4 | 30.3 | 
@article{wu2024llama,
  title={Llama pro: Progressive llama with block expansion},
  author={Wu, Chengyue and Gan, Yukang and Ge, Yixiao and Lu, Zeyu and Wang, Jiahao and Feng, Ye and Luo, Ping and Shan, Ying},
  journal={arXiv preprint arXiv:2401.02415},
  year={2024}
}