TheRamsay's picture
End of training
35d0ae1 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-gpt2-enc-dec
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: cs
          split: train[:500]
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.8489326765188834

wav2vec2-gpt2-enc-dec

This model is a fine-tuned version of on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3276
  • Wer: 0.8489

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.08
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.9498 1.5625 50 0.6548 0.9324
0.4531 3.125 100 0.3959 0.9020
0.4087 4.6875 150 0.3735 0.8894
0.3992 6.25 200 0.3572 0.8747
0.3725 7.8125 250 0.3500 0.8763
0.3635 9.375 300 0.3419 0.8626
0.3647 10.9375 350 0.3381 0.8632
0.36 12.5 400 0.3340 0.8566
0.3588 14.0625 450 0.3316 0.8547
0.362 15.625 500 0.3299 0.8547
0.3613 17.1875 550 0.3280 0.8498
0.3505 18.75 600 0.3276 0.8489

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0