metadata
			language: en
tags:
  - qa
  - question
  - answering
  - SQuAD
  - data2text
  - metric
  - nlg
  - t5-small
license: mit
datasets:
  - squad_v2
model-index:
  - name: t5-qa_webnlg_synth-en
    results:
      - task:
          name: Data Question Answering
          type: extractive-qa
widget:
  - text: >-
      What is the food type at The Eagle? </s> name [ The Eagle ] , eatType [
      coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]
t5-qa_webnlg_synth-en
Model description
This model is a Data Question Answering model based on T5-small, that answers questions given a structured table as input. It is actually a component of QuestEval metric but can be used independently as it is, for QA only.
How to use
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qa_webnlg_synth-en")
model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qa_webnlg_synth-en")
You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):
text_input = "{QUESTION} </s> {CONTEXT}"
where CONTEXT is a structured table that is linearised this way:
CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"
Training data
The model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.
Citation info
@article{rebuffel2021data,
  title={Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation},
  author={Rebuffel, Cl{\'e}ment and Scialom, Thomas and Soulier, Laure and Piwowarski, Benjamin and Lamprier, Sylvain and Staiano, Jacopo and Scoutheeten, Geoffrey and Gallinari, Patrick},
  journal={arXiv preprint arXiv:2104.07555},
  year={2021}
}