|
""" |
|
This file contains primitives for multi-gpu communication. |
|
This is useful when doing distributed training. |
|
|
|
deeply borrow from maskrcnn-benchmark and ST3D |
|
""" |
|
|
|
import pickle |
|
import time |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
|
|
def get_world_size(): |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def synchronize(): |
|
""" |
|
Helper function to synchronize (barrier) among all processes when |
|
using distributed training |
|
""" |
|
if not dist.is_available(): |
|
return |
|
if not dist.is_initialized(): |
|
return |
|
world_size = dist.get_world_size() |
|
if world_size == 1: |
|
return |
|
dist.barrier() |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
|
|
origin_size = None |
|
if not isinstance(data, torch.Tensor): |
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
else: |
|
origin_size = data.size() |
|
tensor = data.reshape(-1) |
|
|
|
tensor_type = tensor.dtype |
|
|
|
|
|
local_size = torch.LongTensor([tensor.numel()]).to("cuda") |
|
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.FloatTensor(size=(max_size,)).cuda().to(tensor_type)) |
|
if local_size != max_size: |
|
padding = torch.FloatTensor(size=(max_size - local_size,)).cuda().to(tensor_type) |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
if origin_size is None: |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
else: |
|
buffer = tensor[:size] |
|
data_list.append(buffer) |
|
|
|
if origin_size is not None: |
|
new_shape = [-1] + list(origin_size[1:]) |
|
resized_list = [] |
|
for data in data_list: |
|
|
|
data = data.reshape(new_shape) |
|
resized_list.append(data) |
|
|
|
return resized_list |
|
else: |
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that process with rank |
|
0 has the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.reduce(values, dst=0) |
|
if dist.get_rank() == 0 and average: |
|
|
|
|
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
def average_reduce_value(data): |
|
data_list = all_gather(data) |
|
return sum(data_list) / len(data_list) |
|
|
|
|
|
def all_reduce(data, op="sum", average=False): |
|
|
|
def op_map(op): |
|
op_dict = { |
|
"SUM": dist.ReduceOp.SUM, |
|
"MAX": dist.ReduceOp.MAX, |
|
"MIN": dist.ReduceOp.MIN, |
|
"PRODUCT": dist.ReduceOp.PRODUCT, |
|
} |
|
return op_dict[op] |
|
|
|
world_size = get_world_size() |
|
if world_size > 1: |
|
reduced_data = data.clone() |
|
dist.all_reduce(reduced_data, op=op_map(op.upper())) |
|
if average: |
|
assert op.upper() == 'SUM' |
|
return reduced_data / world_size |
|
else: |
|
return reduced_data |
|
return data |
|
|
|
|
|
@torch.no_grad() |
|
def concat_all_gather(tensor): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
*** Warning ***: torch.distributed.all_gather has no gradient. |
|
""" |
|
tensors_gather = [torch.ones_like(tensor) |
|
for _ in range(torch.distributed.get_world_size())] |
|
torch.distributed.all_gather(tensors_gather, tensor, async_op=False) |
|
|
|
output = torch.cat(tensors_gather, dim=0) |
|
return output |
|
|