yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
deeply borrow from maskrcnn-benchmark and ST3D
"""
import pickle
import time
import torch
import torch.distributed as dist
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
origin_size = None
if not isinstance(data, torch.Tensor):
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
else:
origin_size = data.size()
tensor = data.reshape(-1)
tensor_type = tensor.dtype
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()]).to("cuda")
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.FloatTensor(size=(max_size,)).cuda().to(tensor_type))
if local_size != max_size:
padding = torch.FloatTensor(size=(max_size - local_size,)).cuda().to(tensor_type)
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
if origin_size is None:
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
else:
buffer = tensor[:size]
data_list.append(buffer)
if origin_size is not None:
new_shape = [-1] + list(origin_size[1:])
resized_list = []
for data in data_list:
# suppose the difference of tensor size exist in first dimension
data = data.reshape(new_shape)
resized_list.append(data)
return resized_list
else:
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that process with rank
0 has the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.reduce(values, dst=0)
if dist.get_rank() == 0 and average:
# only main process gets accumulated, so only divide by
# world_size in this case
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
def average_reduce_value(data):
data_list = all_gather(data)
return sum(data_list) / len(data_list)
def all_reduce(data, op="sum", average=False):
def op_map(op):
op_dict = {
"SUM": dist.ReduceOp.SUM,
"MAX": dist.ReduceOp.MAX,
"MIN": dist.ReduceOp.MIN,
"PRODUCT": dist.ReduceOp.PRODUCT,
}
return op_dict[op]
world_size = get_world_size()
if world_size > 1:
reduced_data = data.clone()
dist.all_reduce(reduced_data, op=op_map(op.upper()))
if average:
assert op.upper() == 'SUM'
return reduced_data / world_size
else:
return reduced_data
return data
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output