Vinsuka's picture
Upload folder using huggingface_hub
d52ad1b verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6190
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
  - source_sentence: What is the duration of the period mentioned in the text?
    sentences:
      - >-
        . The only excep Ɵon to the requirement that the plainƟff must be a
        lending i nsƟtuƟon in order to invoke the provisions of the Act is
        contained in SecƟon 25, in terms of which a person who inter alia
        knowingly draws a cheque which is subsequently dishonoured by the bank
        for want of funds is guilty of an offence under the Act, and proceedings
        can be insƟtuted against such person in the Magistrate’s
      - >-
        ? The 1st question of law is formulated on the basis that , the 1st
        Defendant is the licensee of the 2nd Defendant and therefore, the 1st
        Defendant cannot claim prescriptive title to the subject matter
      - >-
        .50,000/ - (that is , a period of 36 months) but such “Facility” is
        subject to review on 30 /09/2000”, (that is, a period of about only 5
        months from the date of P4)
  - source_sentence: >-
      What is the purpose of the disposition of the property by Lanka Tractors
      Limited as mentioned in the text?
    sentences:
      - >-
        . (3) is whether the said disposition of the property by Lanka Tractors
        Limited was done with the sole object of defrauding its creditors.
        Section 348 of the Companies Act which describes about Fraudulent
        reference would be relevant in this regard
      - >-
        . In the arbitration process, the Government is not involved; the court
        system is not involved (except as provided for in the Act); the parties
        do not have to rely on any Government institution for resolution of
        their dispute. Process of conducting the arbitration, venue, time, mode
        of adducing evidence are all decided by agreement of parties
      - >-
        . This is broadly similar to the provision in the summary procedure on
        liquid claims. The amendment in clause 8 of the Bill, repeals the defini
        Ɵon of the term ‘debt’ in sec Ɵon 30. The subs Ɵtuted defini Ɵon excludes
        the words referred to above which limit its applicability to money owed
        under a promise or agreement which is in wri Ɵng
  - source_sentence: What is one of the topics covered in the training program?
    sentences:
      - >-
        . The resul Ɵng posiƟon is that the court would not have any wri Ʃen
        evidence of the commitment on the part of the debtor when it issues
        decree nisi in the first instance
      - >-
        ? Before this C ourt, there is no dispute on the manner in which the
        appellant obtained the title of the land in question
      - >-
        . Detail reporting procedures to government of Sri Lanka’s contact
        points. - 4 Weeks Phase 3 Training of Port Facility Security Officers
        SATHSINDU/BAGNOLD undertakes to design a training program and conducted
        aid program for up to ten persons. • Understanding the reasons for the
        ISPS code • ISPS Code content and requirements. • Understanding the ISPS
        Code
  - source_sentence: What type of action was taken by the Divisional Secretary?
    sentences:
      - >-
        .2020 was also sent by the Divisional Secretary of Th amankaduwa
        imposing similar restrictions as by the Polonnaruwa Pradeshiya Sabha
      - >-
        . When Seylan Bank published the resolution of its board of directors
        which exercised its powers of Parate Execution in the newspaper on 10th
        March 2006-, HNB had made the application dated 21st March [SC Appeal
        No. 85A /2009 ] Page 6 of 25 2006 to the District Court of Colombo in
        terms of Sections 260, 261, 348, 359 and 352 of the Companies Act No
      - >-
        . Having regard to the above -mentioned stipulated circumstances , I
        consider the facts put forward for the appellant , seeking a reduction
        of sentence. The offence was committed in 2004. The appellant had been
        in remand custody for more than three years and the appell ant did not
        have any previous convictions
  - source_sentence: What is described in Section 25 of the Arbitration Act?
    sentences:
      - >-
        . But where a matter is within the plenary jurisdiction of the Court if
        no objection is taken, the Court will then have jurisdiction to proceed
        on with the matter and make a valid order.” 14 31. Further , in the case
        of Don Tilakaratne v
      - >-
        . (3) The provision of subsections (1) and (2) shall apply only to the
        extent agreed to by the parties. (4) The arbitral tribunal shall decide
        according to considerations of general justice and fairness or trade
        usages only if the parties have expressly authorised it to do so.
        Section 25 of the Arbitration Act describes the form and content of the
        arbitral award as follows: 25
      - >-
        . 9 and 10 based on the objection taken to them by the Counsel for HNB,
        despite the fact that they did not arise from the pleadings, and were
        altogether inconsistent with them, answered the afore-stated question of
        law (in respect of which this Court had granted Leave to Appeal in that
        case) in the affirmative and in favour of HNB, and stated as follows:
        “In conclusion, it needs to be emphasised
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5784883720930233
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7601744186046512
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8197674418604651
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8880813953488372
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5784883720930233
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.253391472868217
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.163953488372093
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08880813953488371
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5784883720930233
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7601744186046512
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8197674418604651
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8880813953488372
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.733110755438693
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6835271317829454
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6874162730700494
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5770348837209303
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7616279069767442
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8197674418604651
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8822674418604651
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5770348837209303
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25387596899224807
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.163953488372093
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0882267441860465
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5770348837209303
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7616279069767442
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8197674418604651
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8822674418604651
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7303694393079266
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6816127953119231
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.685728403908298
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5552325581395349
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7354651162790697
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7950581395348837
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8604651162790697
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5552325581395349
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24515503875968994
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15901162790697673
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08604651162790695
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5552325581395349
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7354651162790697
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7950581395348837
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8604651162790697
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7073914263638542
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6584688768918417
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6631022921972395
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.498546511627907
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6700581395348837
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7369186046511628
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8226744186046512
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.498546511627907
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22335271317829455
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14738372093023255
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08226744186046511
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.498546511627907
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6700581395348837
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7369186046511628
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8226744186046512
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6569451636973174
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6045300387596899
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6099407824679366
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.39680232558139533
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5523255813953488
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.626453488372093
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7209302325581395
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.39680232558139533
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.18410852713178294
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12529069767441858
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07209302325581395
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.39680232558139533
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5523255813953488
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.626453488372093
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7209302325581395
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5476937013127858
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4936317598744924
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5014802548028123
            name: Cosine Map@100

Fine-tuned with QuicKB

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What is described in Section 25 of the Arbitration Act?',
    '. (3) The provision of subsections (1) and (2) shall apply only to the extent agreed to by the parties. (4) The arbitral tribunal shall decide according to considerations of general justice and fairness or trade usages only if the parties have expressly authorised it to do so. Section 25 of the Arbitration Act describes the form and content of the arbitral award as follows: 25',
    '. 9 and 10 based on the objection taken to them by the Counsel for HNB, despite the fact that they did not arise from the pleadings, and were altogether inconsistent with them, answered the afore-stated question of law (in respect of which this Court had granted Leave to Appeal in that case) in the affirmative and in favour of HNB, and stated as follows: “In conclusion, it needs to be emphasised',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.5785 0.577 0.5552 0.4985 0.3968
cosine_accuracy@3 0.7602 0.7616 0.7355 0.6701 0.5523
cosine_accuracy@5 0.8198 0.8198 0.7951 0.7369 0.6265
cosine_accuracy@10 0.8881 0.8823 0.8605 0.8227 0.7209
cosine_precision@1 0.5785 0.577 0.5552 0.4985 0.3968
cosine_precision@3 0.2534 0.2539 0.2452 0.2234 0.1841
cosine_precision@5 0.164 0.164 0.159 0.1474 0.1253
cosine_precision@10 0.0888 0.0882 0.086 0.0823 0.0721
cosine_recall@1 0.5785 0.577 0.5552 0.4985 0.3968
cosine_recall@3 0.7602 0.7616 0.7355 0.6701 0.5523
cosine_recall@5 0.8198 0.8198 0.7951 0.7369 0.6265
cosine_recall@10 0.8881 0.8823 0.8605 0.8227 0.7209
cosine_ndcg@10 0.7331 0.7304 0.7074 0.6569 0.5477
cosine_mrr@10 0.6835 0.6816 0.6585 0.6045 0.4936
cosine_map@100 0.6874 0.6857 0.6631 0.6099 0.5015

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,190 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 7 tokens
    • mean: 15.11 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 69.53 tokens
    • max: 214 tokens
  • Samples:
    anchor positive
    How must the District Court exercise its discretion? imposition of ‘ a’ term; (5) It is not mandatory to impose security, as evinced by the use of the conjunction “or”; (6) In imposing terms, the District Court must be mindful of the objectives of the Act, and its discretion must be exercised judicially
    What is the source of the observation made by Christian Appu? . Christian Appu , (1895) 1 NLR 288 observed that , “possession is "disturbed" either by an action intended to remove the possessor from the land, or by acts which prevent the possessor from enjoying the free and full use of 12 the land of which he is in the course of acquiring the dominion, and which convert his continuous user into a disconnected and divided user ”
    What must the defendant do regarding the plaintiff's claim? . The Court of Appeal in Ramanayake v Sampath Bank Ltd and Others [(1993) 1 Sri LR 145 at page 153] has held that, “The defendant has to deal with the plaintiff’s claim on its merits; it is not competent for the defendant to merely set out technical objections. It is also incumbent on the defendant to reveal his defence, if he has any
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.1034 5 29.8712 - - - - -
0.2067 10 26.1323 - - - - -
0.3101 15 17.8585 - - - - -
0.4134 20 14.0232 - - - - -
0.5168 25 11.6897 - - - - -
0.6202 30 10.8431 - - - - -
0.7235 35 9.264 - - - - -
0.8269 40 11.2186 - - - - -
0.9302 45 9.9143 - - - - -
1.0 49 - 0.7134 0.7110 0.6902 0.6341 0.5282
1.0207 50 7.2581 - - - - -
1.1240 55 6.066 - - - - -
1.2274 60 6.3626 - - - - -
1.3307 65 6.8135 - - - - -
1.4341 70 5.5556 - - - - -
1.5375 75 6.0144 - - - - -
1.6408 80 6.1965 - - - - -
1.7442 85 5.596 - - - - -
1.8475 90 6.631 - - - - -
1.9509 95 6.3319 - - - - -
2.0 98 - 0.7331 0.7304 0.7074 0.6569 0.5477

Framework Versions

  • Python: 3.13.3
  • Sentence Transformers: 3.4.0
  • Transformers: 4.48.1
  • PyTorch: 2.6.0+cu126
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}