Wiebke's picture
End of training
81b6614 verified
metadata
library_name: transformers
license: mit
base_model: deepset/gbert-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: flausch_span_gbert-large
    results: []

flausch_span_gbert-large

This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6725
  • Model Preparation Time: 0.0057
  • Precision: 0.5075
  • Recall: 0.6548
  • F1: 0.5718

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Precision Recall F1
0.5882 1.0 517 0.5842 0.0057 0.4539 0.6280 0.5270
0.3879 2.0 1034 0.5720 0.0057 0.5194 0.6646 0.5831
0.256 3.0 1551 0.6075 0.0057 0.4985 0.6445 0.5622
0.1477 4.0 2068 0.6725 0.0057 0.5075 0.6548 0.5718

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1