|
--- |
|
license: mit |
|
library_name: transformers.js |
|
--- |
|
|
|
https://github.com/VicenteVivan/geo-clip with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Perform worldwide image geolocalization. |
|
```js |
|
import { AutoModel, AutoProcessor, RawImage, Tensor, dot, softmax } from '@xenova/transformers'; |
|
|
|
// Load vision and location models |
|
const model_id = 'Xenova/geoclip-large-patch14'; |
|
const vision_model = await AutoModel.from_pretrained(model_id, { |
|
model_file_name: 'vision_model', |
|
}); |
|
const location_model = await AutoModel.from_pretrained(model_id, { |
|
model_file_name: 'location_model', |
|
quantized: false, |
|
}); |
|
|
|
// Load image processor |
|
const processor = await AutoProcessor.from_pretrained('openai/clip-vit-large-patch14'); |
|
|
|
// Read and preprocess image |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/moraine-lake.png'; |
|
const image = await RawImage.fromURL(url); |
|
const vision_inputs = await processor(image); |
|
|
|
// Compute image embeddings |
|
const { image_embeds } = await vision_model(vision_inputs); |
|
const norm_image_embeds = image_embeds.normalize().data; |
|
|
|
// Define a list of candidate GPS coordinates |
|
// https://github.com/VicenteVivan/geo-clip/blob/main/geoclip/model/gps_gallery/coordinates_100K.csv |
|
const coordinate_data = 'https://huggingface.co/Xenova/geoclip-large-patch14/resolve/main/gps_gallery/coordinates_100K.json'; |
|
const gps_data = await (await fetch(coordinate_data)).json(); |
|
|
|
// Compute location embeddings and compare to image embeddings |
|
const coordinate_batch_size = 512; |
|
const exp_logit_scale = Math.exp(3.681034803390503); // Used for scaling logits |
|
const scores = []; |
|
for (let i = 0; i < gps_data.length; i += coordinate_batch_size) { |
|
const chunk = gps_data.slice(i, i + coordinate_batch_size); |
|
|
|
const { location_embeds } = await location_model({ |
|
location: new Tensor('float32', chunk.flat(), [chunk.length, 2]) |
|
}); |
|
|
|
const norm_location_embeds = location_embeds.normalize().tolist(); |
|
for (const embed of norm_location_embeds) { |
|
const score = exp_logit_scale * dot(norm_image_embeds, embed); |
|
scores.push(score); |
|
} |
|
} |
|
|
|
// Get top predictions |
|
const top_k = 50; |
|
const results = softmax(scores) |
|
.map((x, i) => [x, i]) |
|
.sort((a, b) => b[0] - a[0]) |
|
.slice(0, top_k) |
|
.map(([score, index]) => ({ index, gps: gps_data[index], score })); |
|
|
|
console.log('======================='); |
|
console.log('Top 5 GPS Predictions 📍'); |
|
console.log('======================='); |
|
for (let i = 0; i < 5; ++i) { |
|
console.log(results[i]); |
|
} |
|
console.log('======================='); |
|
``` |
|
|
|
Outputs: |
|
``` |
|
======================= |
|
Top 5 GPS Predictions 📍 |
|
======================= |
|
{ |
|
index: 75129, |
|
gps: [ 51.327447, -116.183509 ], |
|
score: 0.06895832493631944 |
|
} |
|
{ |
|
index: 5158, |
|
gps: [ 51.326401, -116.18263 ], |
|
score: 0.06843383108770337 |
|
} |
|
{ |
|
index: 77752, |
|
gps: [ 51.328198, -116.180934 ], |
|
score: 0.06652924543010541 |
|
} |
|
{ |
|
index: 32529, |
|
gps: [ 51.327809, -116.180334 ], |
|
score: 0.065981075526145 |
|
} |
|
{ |
|
index: 461, |
|
gps: [ 51.322353, -116.18557 ], |
|
score: 0.06476605375767822 |
|
} |
|
======================= |
|
``` |
|
|
|
As seen on the map, this is indeed the location of [Moraine Lake](https://en.wikipedia.org/wiki/Moraine_Lake) in Canada. |
|
|
|
 |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |
|
|