|
--- |
|
library_name: peft |
|
license: gemma |
|
base_model: google/codegemma-7b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: code-bench-CodeGemma-7B-cg-nv9n_zs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# code-bench-CodeGemma-7B-cg-nv9n_zs |
|
|
|
This model is a fine-tuned version of [google/codegemma-7b](https://huggingface.co/google/codegemma-7b) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0352 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.6222 | 0.0530 | 50 | 0.5965 | |
|
| 0.4468 | 0.1061 | 100 | 0.4544 | |
|
| 0.3745 | 0.1591 | 150 | 0.3239 | |
|
| 0.2795 | 0.2121 | 200 | 0.2315 | |
|
| 0.1976 | 0.2652 | 250 | 0.1633 | |
|
| 0.1415 | 0.3182 | 300 | 0.1274 | |
|
| 0.1071 | 0.3713 | 350 | 0.0852 | |
|
| 0.0845 | 0.4243 | 400 | 0.0698 | |
|
| 0.0724 | 0.4773 | 450 | 0.0610 | |
|
| 0.0716 | 0.5304 | 500 | 0.0574 | |
|
| 0.0745 | 0.5834 | 550 | 0.0501 | |
|
| 0.0618 | 0.6364 | 600 | 0.0507 | |
|
| 0.0602 | 0.6895 | 650 | 0.0494 | |
|
| 0.0646 | 0.7425 | 700 | 0.0480 | |
|
| 0.0554 | 0.7955 | 750 | 0.0471 | |
|
| 0.0506 | 0.8486 | 800 | 0.0450 | |
|
| 0.0591 | 0.9016 | 850 | 0.0445 | |
|
| 0.0498 | 0.9547 | 900 | 0.0440 | |
|
| 0.0457 | 1.0077 | 950 | 0.0430 | |
|
| 0.0484 | 1.0607 | 1000 | 0.0425 | |
|
| 0.0434 | 1.1138 | 1050 | 0.0416 | |
|
| 0.0473 | 1.1668 | 1100 | 0.0416 | |
|
| 0.0512 | 1.2198 | 1150 | 0.0424 | |
|
| 0.0521 | 1.2729 | 1200 | 0.0410 | |
|
| 0.0526 | 1.3259 | 1250 | 0.0407 | |
|
| 0.0393 | 1.3789 | 1300 | 0.0409 | |
|
| 0.041 | 1.4320 | 1350 | 0.0399 | |
|
| 0.0505 | 1.4850 | 1400 | 0.0405 | |
|
| 0.0495 | 1.5381 | 1450 | 0.0399 | |
|
| 0.0454 | 1.5911 | 1500 | 0.0392 | |
|
| 0.0428 | 1.6441 | 1550 | 0.0393 | |
|
| 0.045 | 1.6972 | 1600 | 0.0386 | |
|
| 0.046 | 1.7502 | 1650 | 0.0383 | |
|
| 0.0436 | 1.8032 | 1700 | 0.0383 | |
|
| 0.0445 | 1.8563 | 1750 | 0.0386 | |
|
| 0.0414 | 1.9093 | 1800 | 0.0382 | |
|
| 0.05 | 1.9623 | 1850 | 0.0385 | |
|
| 0.0444 | 2.0154 | 1900 | 0.0382 | |
|
| 0.0422 | 2.0684 | 1950 | 0.0382 | |
|
| 0.0494 | 2.1215 | 2000 | 0.0381 | |
|
| 0.0408 | 2.1745 | 2050 | 0.0378 | |
|
| 0.0394 | 2.2275 | 2100 | 0.0379 | |
|
| 0.0392 | 2.2806 | 2150 | 0.0372 | |
|
| 0.0356 | 2.3336 | 2200 | 0.0375 | |
|
| 0.0448 | 2.3866 | 2250 | 0.0371 | |
|
| 0.0477 | 2.4397 | 2300 | 0.0369 | |
|
| 0.0404 | 2.4927 | 2350 | 0.0369 | |
|
| 0.0378 | 2.5457 | 2400 | 0.0367 | |
|
| 0.0448 | 2.5988 | 2450 | 0.0367 | |
|
| 0.0408 | 2.6518 | 2500 | 0.0364 | |
|
| 0.0419 | 2.7049 | 2550 | 0.0363 | |
|
| 0.0431 | 2.7579 | 2600 | 0.0365 | |
|
| 0.042 | 2.8109 | 2650 | 0.0363 | |
|
| 0.0398 | 2.8640 | 2700 | 0.0362 | |
|
| 0.033 | 2.9170 | 2750 | 0.0360 | |
|
| 0.0447 | 2.9700 | 2800 | 0.0359 | |
|
| 0.0402 | 3.0231 | 2850 | 0.0360 | |
|
| 0.0433 | 3.0761 | 2900 | 0.0359 | |
|
| 0.0342 | 3.1291 | 2950 | 0.0363 | |
|
| 0.0404 | 3.1822 | 3000 | 0.0360 | |
|
| 0.0365 | 3.2352 | 3050 | 0.0357 | |
|
| 0.0374 | 3.2883 | 3100 | 0.0357 | |
|
| 0.0363 | 3.3413 | 3150 | 0.0358 | |
|
| 0.0378 | 3.3943 | 3200 | 0.0357 | |
|
| 0.0376 | 3.4474 | 3250 | 0.0356 | |
|
| 0.0347 | 3.5004 | 3300 | 0.0355 | |
|
| 0.0391 | 3.5534 | 3350 | 0.0353 | |
|
| 0.0306 | 3.6065 | 3400 | 0.0353 | |
|
| 0.0351 | 3.6595 | 3450 | 0.0353 | |
|
| 0.0349 | 3.7125 | 3500 | 0.0354 | |
|
| 0.0399 | 3.7656 | 3550 | 0.0354 | |
|
| 0.033 | 3.8186 | 3600 | 0.0352 | |
|
| 0.0304 | 3.8717 | 3650 | 0.0352 | |
|
| 0.0322 | 3.9247 | 3700 | 0.0354 | |
|
| 0.0362 | 3.9777 | 3750 | 0.0350 | |
|
| 0.0346 | 4.0308 | 3800 | 0.0352 | |
|
| 0.0292 | 4.0838 | 3850 | 0.0353 | |
|
| 0.0294 | 4.1368 | 3900 | 0.0354 | |
|
| 0.0318 | 4.1899 | 3950 | 0.0354 | |
|
| 0.0357 | 4.2429 | 4000 | 0.0351 | |
|
| 0.0325 | 4.2959 | 4050 | 0.0352 | |
|
| 0.0337 | 4.3490 | 4100 | 0.0352 | |
|
| 0.0346 | 4.4020 | 4150 | 0.0353 | |
|
| 0.0341 | 4.4551 | 4200 | 0.0352 | |
|
| 0.0347 | 4.5081 | 4250 | 0.0353 | |
|
| 0.0343 | 4.5611 | 4300 | 0.0352 | |
|
| 0.0339 | 4.6142 | 4350 | 0.0352 | |
|
| 0.0358 | 4.6672 | 4400 | 0.0352 | |
|
| 0.0312 | 4.7234 | 4450 | 0.0352 | |
|
| 0.0355 | 4.7765 | 4500 | 0.0351 | |
|
| 0.0292 | 4.8295 | 4550 | 0.0351 | |
|
| 0.0365 | 4.8825 | 4600 | 0.0352 | |
|
| 0.036 | 4.9356 | 4650 | 0.0352 | |
|
| 0.0319 | 4.9886 | 4700 | 0.0352 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |