|
# AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset |
|
|
|
This repository is the official PyTorch implementation of [AccVideo](https://arxiv.org/abs/2503.19462). AccVideo is a novel efficient distillation method to accelerate video diffusion models with synthetic datset. Our method is 8.5x faster than HunyuanVideo. |
|
|
|
|
|
[](https://arxiv.org/abs/2503.19462) |
|
[](https://aejion.github.io/accvideo/) |
|
[](https://huggingface.co/aejion/AccVideo) |
|
|
|
## 🔥🔥🔥 News |
|
|
|
* May 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo-WanX-T2V-14B) of AccVideo based on WanXT2V-14B. |
|
* Mar 31, 2025: [ComfyUI-Kijai (FP8 Inference)](https://huggingface.co/Kijai/HunyuanVideo_comfy/blob/main/accvideo-t2v-5-steps_fp8_e4m3fn.safetensors): ComfyUI-Integration by [Kijai](https://huggingface.co/Kijai) |
|
* Mar 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo) of AccVideo based on HunyuanT2V. |
|
|
|
|
|
## 🎥 Demo (Based on HunyuanT2V) |
|
|
|
|
|
https://github.com/user-attachments/assets/59f3c5db-d585-4773-8d92-366c1eb040f0 |
|
|
|
## 🎥 Demo (Based on WanXT2V-14B) |
|
|
|
|
|
|
|
## 📑 Open-source Plan |
|
|
|
- [x] Inference |
|
- [x] Checkpoints |
|
- [ ] Multi-GPU Inference |
|
- [ ] Synthetic Video Dataset, SynVid |
|
- [ ] Training |
|
|
|
|
|
## 🔧 Installation |
|
The code is tested on Python 3.10.0, CUDA 11.8 and A100. |
|
``` |
|
conda create -n accvideo python==3.10.0 |
|
conda activate accvideo |
|
|
|
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118 |
|
pip install -r requirements.txt |
|
pip install flash-attn==2.7.3 --no-build-isolation |
|
pip install "huggingface_hub[cli]" |
|
``` |
|
|
|
## 🤗 Checkpoints |
|
To download the checkpoints (based on HunyuanT2V), use the following command: |
|
```bash |
|
# Download the model weight |
|
huggingface-cli download aejion/AccVideo --local-dir ./ckpts |
|
``` |
|
|
|
To download the checkpoints (based on WanX-T2V-14B), use the following command: |
|
```bash |
|
# Download the model weight |
|
huggingface-cli download aejion/AccVideo-WanX-T2V-14B --local-dir ./wanx_t2v_ckpts |
|
``` |
|
|
|
## 🚀 Inference |
|
We recommend using a GPU with 80GB of memory. We use AccVideo to distill Hunyuan and WanX. |
|
|
|
### Inference for HunyuanT2V |
|
|
|
To run the inference, use the following command: |
|
```bash |
|
export MODEL_BASE=./ckpts |
|
python sample_t2v.py \ |
|
--height 544 \ |
|
--width 960 \ |
|
--num_frames 93 \ |
|
--num_inference_steps 5 \ |
|
--guidance_scale 1 \ |
|
--embedded_cfg_scale 6 \ |
|
--flow_shift 7 \ |
|
--flow-reverse \ |
|
--prompt_file ./assets/prompt.txt \ |
|
--seed 1024 \ |
|
--output_path ./results/accvideo-544p \ |
|
--model_path ./ckpts \ |
|
--dit-weight ./ckpts/accvideo-t2v-5-steps/diffusion_pytorch_model.pt |
|
``` |
|
|
|
The following table shows the comparisons on inference time using a single A100 GPU: |
|
|
|
| Model | Setting(height/width/frame) | Inference Time(s) | |
|
|:------------:|:---------------------------:|:-----------------:| |
|
| HunyuanVideo | 720px1280px129f | 3234 | |
|
| Ours | 720px1280px129f | 380(8.5x faster) | |
|
| HunyuanVideo | 544px960px93f | 704 | |
|
| Ours | 544px960px93f | 91(7.7x faster) | |
|
|
|
### Inference for WanXT2V |
|
|
|
To run the inference, use the following command: |
|
```bash |
|
python sample_wanx_t2v.py \ |
|
--task t2v-14B \ |
|
--size 832*480 \ |
|
--ckpt_dir ./wanx_t2v_ckpts \ |
|
--sample_solver 'unipc' \ |
|
--save_dir ./results/accvideo_wanx_14B \ |
|
--sample_steps 10 |
|
``` |
|
|
|
The following table shows the comparisons on inference time using a single A100 GPU: |
|
|
|
| Model | Setting(height/width/frame) | Inference Time(s) | |
|
|:-----:|:---------------------------:|:-----------------:| |
|
| Wanx | 480px832px81f | 932 | |
|
| Ours | 480px832px81f | 97(9.6x faster) | |
|
|
|
## 🔗 BibTeX |
|
|
|
If you find [AccVideo](https://arxiv.org/abs/2503.19462) useful for your research and applications, please cite using this BibTeX: |
|
|
|
```BibTeX |
|
@article{zhang2025accvideo, |
|
title={AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset}, |
|
author={Zhang, Haiyu and Chen, Xinyuan and Wang, Yaohui and Liu, Xihui and Wang, Yunhong and Qiao, Yu}, |
|
journal={arXiv preprint arXiv:2503.19462}, |
|
year={2025} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
The code is built upon [FastVideo](https://github.com/hao-ai-lab/FastVideo) and [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we thank all the contributors for open-sourcing. |
|
|