Add sample usage section to model card
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
-
datasets:
|
5 |
-
- aimagelab/ReT-M2KR
|
6 |
base_model:
|
7 |
- google/siglip2-large-patch16-256
|
8 |
- colbert-ir/colbertv2.0
|
|
|
|
|
|
|
|
|
9 |
pipeline_tag: visual-document-retrieval
|
10 |
---
|
11 |
|
@@ -13,8 +13,8 @@ pipeline_tag: visual-document-retrieval
|
|
13 |
|
14 |
Official implementation of ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval.
|
15 |
|
16 |
-
This model features a visual backbone based on [google/siglip2-large-patch16-256](https://huggingface.co/google/siglip2-large-patch16-256) and a textual backbone based on [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0).
|
17 |
-
<br>The backbones have been fine-tuned on the M2KR dataset.
|
18 |
|
19 |
|
20 |
### Model Sources
|
@@ -28,11 +28,65 @@ This model features a visual backbone based on [google/siglip2-large-patch16-256
|
|
28 |
### Training Data
|
29 |
[aimagelab/ReT-M2KR](https://huggingface.co/datasets/aimagelab/ReT-M2KR)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Citation
|
33 |
```
|
34 |
@article{caffagni2025recurrencemeetstransformers,
|
35 |
-
title={{Recurrence Meets Transformers for Universal Multimodal Retrieval}},
|
36 |
author={Davide Caffagni and Sara Sarto and Marcella Cornia and Lorenzo Baraldi and Rita Cucchiara},
|
37 |
journal={arXiv preprint arXiv:2509.08897},
|
38 |
year={2025}
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- google/siglip2-large-patch16-256
|
4 |
- colbert-ir/colbertv2.0
|
5 |
+
datasets:
|
6 |
+
- aimagelab/ReT-M2KR
|
7 |
+
library_name: transformers
|
8 |
+
license: apache-2.0
|
9 |
pipeline_tag: visual-document-retrieval
|
10 |
---
|
11 |
|
|
|
13 |
|
14 |
Official implementation of ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval.
|
15 |
|
16 |
+
This model features a visual backbone based on [google/siglip2-large-patch16-256](https://huggingface.co/google/siglip2-large-patch16-256) and a textual backbone based on [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0).
|
17 |
+
<br>The backbones have been fine-tuned on the M2KR dataset.
|
18 |
|
19 |
|
20 |
### Model Sources
|
|
|
28 |
### Training Data
|
29 |
[aimagelab/ReT-M2KR](https://huggingface.co/datasets/aimagelab/ReT-M2KR)
|
30 |
|
31 |
+
## Use with 🤗's Transformers
|
32 |
+
|
33 |
+
```python
|
34 |
+
from src.models import Ret2Model
|
35 |
+
import requests
|
36 |
+
from PIL import Image
|
37 |
+
from io import BytesIO
|
38 |
+
import torch
|
39 |
+
import torch.nn.functional as F
|
40 |
+
|
41 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
42 |
+
|
43 |
+
headers = {
|
44 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
45 |
+
}
|
46 |
+
|
47 |
+
query_img_url = 'https://upload.wikimedia.org/wikipedia/commons/8/84/Ghirlandina_%28Modena%29.jpg'
|
48 |
+
response = requests.get(query_img_url, headers=headers)
|
49 |
+
query_image = Image.open(BytesIO(response.content)).convert('RGB')
|
50 |
+
query_text = 'Where is this building located?'
|
51 |
+
|
52 |
+
passage_img_url = 'https://upload.wikimedia.org/wikipedia/commons/0/09/Absidi_e_Ghirlandina.jpg'
|
53 |
+
response = requests.get(query_img_url, headers=headers)
|
54 |
+
passage_image = Image.open(BytesIO(response.content)).convert('RGB')
|
55 |
+
passage_text = (
|
56 |
+
"The Ghirlandina is the bell tower of the Cathedral of Modena, in Modena, Italy. "
|
57 |
+
"It is 86.12 metres (282.7 ft) high and is the symbol of the city. "
|
58 |
+
"It was built in Romanesque style in the 12th century and is part of a UNESCO World Heritage Site."
|
59 |
+
)
|
60 |
+
|
61 |
+
model = Ret2Model.from_pretrained('aimagelab/ReT2-M2KR-ColBERT-SigLIP2-ViT-L', device_map=device)
|
62 |
+
|
63 |
+
query_txt_inputs = model.tokenizer([query_text], return_tensors='pt').to(device)
|
64 |
+
query_img_inputs = model.image_processor([query_image], return_tensors='pt').to(device)
|
65 |
+
passage_txt_inputs = model.tokenizer([passage_text], return_tensors='pt').to(device)
|
66 |
+
passage_img_inputs = model.image_processor([passage_image], return_tensors='pt').to(device)
|
67 |
+
|
68 |
+
with torch.inference_mode():
|
69 |
+
query_feats = model.get_ret_features(
|
70 |
+
input_ids=query_txt_inputs.input_ids,
|
71 |
+
attention_mask=query_txt_inputs.attention_mask,
|
72 |
+
pixel_values=query_img_inputs.pixel_values
|
73 |
+
)
|
74 |
+
|
75 |
+
passage_feats = model.get_ret_features(
|
76 |
+
input_ids=passage_txt_inputs.input_ids,
|
77 |
+
attention_mask=passage_txt_inputs.attention_mask,
|
78 |
+
pixel_values=passage_img_inputs.pixel_values
|
79 |
+
)
|
80 |
+
|
81 |
+
sim = F.normalize(query_feats, p=2, dim=-1) @ F.normalize(passage_feats, p=2, dim=-1).T
|
82 |
+
|
83 |
+
print(f"query-passage similarity: {sim.item():.3f}")
|
84 |
+
```
|
85 |
|
86 |
## Citation
|
87 |
```
|
88 |
@article{caffagni2025recurrencemeetstransformers,
|
89 |
+
title={{Recurrence Meets Transformers for Universal Multimodal Retrieval}},
|
90 |
author={Davide Caffagni and Sara Sarto and Marcella Cornia and Lorenzo Baraldi and Rita Cucchiara},
|
91 |
journal={arXiv preprint arXiv:2509.08897},
|
92 |
year={2025}
|