anuragrawal's picture
End of training
836c101
|
raw
history blame
3.04 kB
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart-large-cnn-YT-transcript-sum
    results: []

bart-large-cnn-YT-transcript-sum

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4333
  • Rouge1: 51.3497
  • Rouge2: 24.9492
  • Rougel: 37.3016
  • Rougelsum: 47.8317
  • Gen Len: 97.6074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.6217 1.0 540 1.4424 50.4219 24.0335 35.9464 46.8506 90.2630
1.0592 2.0 1080 1.4333 51.3497 24.9492 37.3016 47.8317 97.6074
0.723 3.0 1620 1.6339 50.9967 24.488 37.1713 47.2127 98.6370
0.4971 4.0 2160 1.7243 51.2797 24.0696 36.6573 47.4137 99.8370
0.3559 5.0 2700 1.9144 51.4203 24.3533 36.8606 47.6179 96.4481
0.2528 6.0 3240 2.1977 51.3129 24.724 36.992 47.8757 97.7630
0.1804 7.0 3780 2.3279 51.3644 23.9238 36.5924 47.2068 94.4481
0.1331 8.0 4320 2.4088 51.742 24.7768 37.6327 48.0398 90.7778
0.0949 9.0 4860 2.5075 52.0502 24.8043 37.5371 48.0676 86.2037
0.074 10.0 5400 2.5641 52.0733 25.2822 37.6324 48.3677 93.3370
0.0506 11.0 5940 2.7945 52.2919 25.5404 37.956 48.4453 93.2222
0.0343 12.0 6480 2.8614 52.0782 25.039 37.5952 48.469 89.5222
0.0126 13.0 7020 3.0071 52.3343 25.4229 37.8453 48.4345 92.5889
0.0065 14.0 7560 3.0398 52.0812 24.9641 37.409 48.2338 94.3037
0.0032 15.0 8100 3.0438 52.184 25.1639 37.4424 48.3197 93.2333

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3