Lampistero
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v3
- Maximum Sequence Length: 8194 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: es
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("csanz91/lampistero_rag_embeddings")
sentences = [
'¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930?',
'El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas.',
'Antonio Gargallo.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7803 |
| cosine_accuracy@3 |
0.8884 |
| cosine_accuracy@5 |
0.904 |
| cosine_accuracy@10 |
0.9234 |
| cosine_precision@1 |
0.7803 |
| cosine_precision@3 |
0.2961 |
| cosine_precision@5 |
0.1808 |
| cosine_precision@10 |
0.0923 |
| cosine_recall@1 |
0.7803 |
| cosine_recall@3 |
0.8884 |
| cosine_recall@5 |
0.904 |
| cosine_recall@10 |
0.9234 |
| cosine_ndcg@10 |
0.8576 |
| cosine_mrr@10 |
0.8359 |
| cosine_map@100 |
0.8374 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7827 |
| cosine_accuracy@3 |
0.8877 |
| cosine_accuracy@5 |
0.9034 |
| cosine_accuracy@10 |
0.9246 |
| cosine_precision@1 |
0.7827 |
| cosine_precision@3 |
0.2959 |
| cosine_precision@5 |
0.1807 |
| cosine_precision@10 |
0.0925 |
| cosine_recall@1 |
0.7827 |
| cosine_recall@3 |
0.8877 |
| cosine_recall@5 |
0.9034 |
| cosine_recall@10 |
0.9246 |
| cosine_ndcg@10 |
0.8588 |
| cosine_mrr@10 |
0.8372 |
| cosine_map@100 |
0.8385 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7797 |
| cosine_accuracy@3 |
0.8859 |
| cosine_accuracy@5 |
0.901 |
| cosine_accuracy@10 |
0.9228 |
| cosine_precision@1 |
0.7797 |
| cosine_precision@3 |
0.2953 |
| cosine_precision@5 |
0.1802 |
| cosine_precision@10 |
0.0923 |
| cosine_recall@1 |
0.7797 |
| cosine_recall@3 |
0.8859 |
| cosine_recall@5 |
0.901 |
| cosine_recall@10 |
0.9228 |
| cosine_ndcg@10 |
0.8564 |
| cosine_mrr@10 |
0.8347 |
| cosine_map@100 |
0.8362 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7707 |
| cosine_accuracy@3 |
0.8823 |
| cosine_accuracy@5 |
0.9016 |
| cosine_accuracy@10 |
0.9191 |
| cosine_precision@1 |
0.7707 |
| cosine_precision@3 |
0.2941 |
| cosine_precision@5 |
0.1803 |
| cosine_precision@10 |
0.0919 |
| cosine_recall@1 |
0.7707 |
| cosine_recall@3 |
0.8823 |
| cosine_recall@5 |
0.9016 |
| cosine_recall@10 |
0.9191 |
| cosine_ndcg@10 |
0.8512 |
| cosine_mrr@10 |
0.8287 |
| cosine_map@100 |
0.8303 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7604 |
| cosine_accuracy@3 |
0.869 |
| cosine_accuracy@5 |
0.8902 |
| cosine_accuracy@10 |
0.9131 |
| cosine_precision@1 |
0.7604 |
| cosine_precision@3 |
0.2897 |
| cosine_precision@5 |
0.178 |
| cosine_precision@10 |
0.0913 |
| cosine_recall@1 |
0.7604 |
| cosine_recall@3 |
0.869 |
| cosine_recall@5 |
0.8902 |
| cosine_recall@10 |
0.9131 |
| cosine_ndcg@10 |
0.8415 |
| cosine_mrr@10 |
0.8181 |
| cosine_map@100 |
0.82 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7248 |
| cosine_accuracy@3 |
0.8521 |
| cosine_accuracy@5 |
0.8751 |
| cosine_accuracy@10 |
0.8974 |
| cosine_precision@1 |
0.7248 |
| cosine_precision@3 |
0.284 |
| cosine_precision@5 |
0.175 |
| cosine_precision@10 |
0.0897 |
| cosine_recall@1 |
0.7248 |
| cosine_recall@3 |
0.8521 |
| cosine_recall@5 |
0.8751 |
| cosine_recall@10 |
0.8974 |
| cosine_ndcg@10 |
0.8182 |
| cosine_mrr@10 |
0.792 |
| cosine_map@100 |
0.7938 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 14,907 training samples
- Columns:
query and answer
- Approximate statistics based on the first 1000 samples:
|
query |
answer |
| type |
string |
string |
| details |
- min: 9 tokens
- mean: 25.88 tokens
- max: 63 tokens
|
- min: 3 tokens
- mean: 34.09 tokens
- max: 340 tokens
|
- Samples:
| query |
answer |
En Valdeconejos, ¿cuál era la sociedad de agricultores en 1952? |
En Valdeconejos, la sociedad de agricultores en 1952 era el Pósito de Agricultores. |
¿Qué nombres de capataces se registran en el pueblo de Escucha en el año 1952? |
En Escucha, en 1952, los capataces registrados son Peralta (Manuel) y Rodriguez (Gonzalo). |
En el contexto de la minería, ¿qué implica 'despajar'? |
'Despajar' se refiere a cribar a mano material y desechos para obtener las partes de carbón que hay en ellos. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 64
per_device_eval_batch_size: 16
gradient_accumulation_steps: 32
learning_rate: 2e-05
num_train_epochs: 12
lr_scheduler_type: cosine
warmup_ratio: 0.1
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 32
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 12
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_1024_cosine_ndcg@10 |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 1.0 |
8 |
- |
0.7663 |
0.7676 |
0.7656 |
0.7626 |
0.7393 |
0.6969 |
| 1.2747 |
10 |
127.0406 |
- |
- |
- |
- |
- |
- |
| 2.0 |
16 |
- |
0.8244 |
0.8240 |
0.8226 |
0.8172 |
0.8060 |
0.7775 |
| 2.5494 |
20 |
38.8995 |
- |
- |
- |
- |
- |
- |
| 3.0 |
24 |
- |
0.8425 |
0.8426 |
0.8444 |
0.8373 |
0.8252 |
0.7996 |
| 3.8240 |
30 |
20.1528 |
- |
- |
- |
- |
- |
- |
| 4.0 |
32 |
- |
0.8526 |
0.8520 |
0.8498 |
0.8456 |
0.8289 |
0.8037 |
| 5.0 |
40 |
14.0513 |
0.8550 |
0.8543 |
0.8517 |
0.8490 |
0.8368 |
0.8139 |
| 6.0 |
48 |
- |
0.8572 |
0.8565 |
0.8557 |
0.8520 |
0.8404 |
0.8170 |
| 6.2747 |
50 |
13.364 |
- |
- |
- |
- |
- |
- |
| 7.0 |
56 |
- |
0.8579 |
0.8576 |
0.8553 |
0.8514 |
0.8422 |
0.8180 |
| 7.5494 |
60 |
12.7986 |
- |
- |
- |
- |
- |
- |
| 8.0 |
64 |
- |
0.8573 |
0.8580 |
0.8560 |
0.8523 |
0.8414 |
0.8178 |
| 8.8240 |
70 |
12.0091 |
- |
- |
- |
- |
- |
- |
| 9.0 |
72 |
- |
0.8578 |
0.8586 |
0.8562 |
0.8519 |
0.8423 |
0.8184 |
| 10.0 |
80 |
10.9468 |
0.8583 |
0.8589 |
0.8565 |
0.8530 |
0.8413 |
0.8191 |
| 10.5494 |
84 |
- |
0.8576 |
0.8588 |
0.8564 |
0.8512 |
0.8415 |
0.8182 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}