Add new SentenceTransformer model
Browse files- README.md +193 -188
- model.safetensors +1 -1
README.md
CHANGED
@@ -81,49 +81,49 @@ model-index:
|
|
81 |
type: dim_1024
|
82 |
metrics:
|
83 |
- type: cosine_accuracy@1
|
84 |
-
value: 0.
|
85 |
name: Cosine Accuracy@1
|
86 |
- type: cosine_accuracy@3
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy@3
|
89 |
- type: cosine_accuracy@5
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy@5
|
92 |
- type: cosine_accuracy@10
|
93 |
-
value: 0.
|
94 |
name: Cosine Accuracy@10
|
95 |
- type: cosine_precision@1
|
96 |
-
value: 0.
|
97 |
name: Cosine Precision@1
|
98 |
- type: cosine_precision@3
|
99 |
-
value: 0.
|
100 |
name: Cosine Precision@3
|
101 |
- type: cosine_precision@5
|
102 |
-
value: 0.
|
103 |
name: Cosine Precision@5
|
104 |
- type: cosine_precision@10
|
105 |
-
value: 0.
|
106 |
name: Cosine Precision@10
|
107 |
- type: cosine_recall@1
|
108 |
-
value: 0.
|
109 |
name: Cosine Recall@1
|
110 |
- type: cosine_recall@3
|
111 |
-
value: 0.
|
112 |
name: Cosine Recall@3
|
113 |
- type: cosine_recall@5
|
114 |
-
value: 0.
|
115 |
name: Cosine Recall@5
|
116 |
- type: cosine_recall@10
|
117 |
-
value: 0.
|
118 |
name: Cosine Recall@10
|
119 |
- type: cosine_ndcg@10
|
120 |
-
value: 0.
|
121 |
name: Cosine Ndcg@10
|
122 |
- type: cosine_mrr@10
|
123 |
-
value: 0.
|
124 |
name: Cosine Mrr@10
|
125 |
- type: cosine_map@100
|
126 |
-
value: 0.
|
127 |
name: Cosine Map@100
|
128 |
- task:
|
129 |
type: information-retrieval
|
@@ -133,49 +133,49 @@ model-index:
|
|
133 |
type: dim_768
|
134 |
metrics:
|
135 |
- type: cosine_accuracy@1
|
136 |
-
value: 0.
|
137 |
name: Cosine Accuracy@1
|
138 |
- type: cosine_accuracy@3
|
139 |
-
value: 0.
|
140 |
name: Cosine Accuracy@3
|
141 |
- type: cosine_accuracy@5
|
142 |
-
value: 0.
|
143 |
name: Cosine Accuracy@5
|
144 |
- type: cosine_accuracy@10
|
145 |
-
value: 0.
|
146 |
name: Cosine Accuracy@10
|
147 |
- type: cosine_precision@1
|
148 |
-
value: 0.
|
149 |
name: Cosine Precision@1
|
150 |
- type: cosine_precision@3
|
151 |
-
value: 0.
|
152 |
name: Cosine Precision@3
|
153 |
- type: cosine_precision@5
|
154 |
-
value: 0.
|
155 |
name: Cosine Precision@5
|
156 |
- type: cosine_precision@10
|
157 |
-
value: 0.
|
158 |
name: Cosine Precision@10
|
159 |
- type: cosine_recall@1
|
160 |
-
value: 0.
|
161 |
name: Cosine Recall@1
|
162 |
- type: cosine_recall@3
|
163 |
-
value: 0.
|
164 |
name: Cosine Recall@3
|
165 |
- type: cosine_recall@5
|
166 |
-
value: 0.
|
167 |
name: Cosine Recall@5
|
168 |
- type: cosine_recall@10
|
169 |
-
value: 0.
|
170 |
name: Cosine Recall@10
|
171 |
- type: cosine_ndcg@10
|
172 |
-
value: 0.
|
173 |
name: Cosine Ndcg@10
|
174 |
- type: cosine_mrr@10
|
175 |
-
value: 0.
|
176 |
name: Cosine Mrr@10
|
177 |
- type: cosine_map@100
|
178 |
-
value: 0.
|
179 |
name: Cosine Map@100
|
180 |
- task:
|
181 |
type: information-retrieval
|
@@ -185,49 +185,49 @@ model-index:
|
|
185 |
type: dim_512
|
186 |
metrics:
|
187 |
- type: cosine_accuracy@1
|
188 |
-
value: 0.
|
189 |
name: Cosine Accuracy@1
|
190 |
- type: cosine_accuracy@3
|
191 |
-
value: 0.
|
192 |
name: Cosine Accuracy@3
|
193 |
- type: cosine_accuracy@5
|
194 |
-
value: 0.
|
195 |
name: Cosine Accuracy@5
|
196 |
- type: cosine_accuracy@10
|
197 |
-
value: 0.
|
198 |
name: Cosine Accuracy@10
|
199 |
- type: cosine_precision@1
|
200 |
-
value: 0.
|
201 |
name: Cosine Precision@1
|
202 |
- type: cosine_precision@3
|
203 |
-
value: 0.
|
204 |
name: Cosine Precision@3
|
205 |
- type: cosine_precision@5
|
206 |
-
value: 0.
|
207 |
name: Cosine Precision@5
|
208 |
- type: cosine_precision@10
|
209 |
-
value: 0.
|
210 |
name: Cosine Precision@10
|
211 |
- type: cosine_recall@1
|
212 |
-
value: 0.
|
213 |
name: Cosine Recall@1
|
214 |
- type: cosine_recall@3
|
215 |
-
value: 0.
|
216 |
name: Cosine Recall@3
|
217 |
- type: cosine_recall@5
|
218 |
-
value: 0.
|
219 |
name: Cosine Recall@5
|
220 |
- type: cosine_recall@10
|
221 |
-
value: 0.
|
222 |
name: Cosine Recall@10
|
223 |
- type: cosine_ndcg@10
|
224 |
-
value: 0.
|
225 |
name: Cosine Ndcg@10
|
226 |
- type: cosine_mrr@10
|
227 |
-
value: 0.
|
228 |
name: Cosine Mrr@10
|
229 |
- type: cosine_map@100
|
230 |
-
value: 0.
|
231 |
name: Cosine Map@100
|
232 |
- task:
|
233 |
type: information-retrieval
|
@@ -237,49 +237,49 @@ model-index:
|
|
237 |
type: dim_256
|
238 |
metrics:
|
239 |
- type: cosine_accuracy@1
|
240 |
-
value: 0.
|
241 |
name: Cosine Accuracy@1
|
242 |
- type: cosine_accuracy@3
|
243 |
-
value: 0.
|
244 |
name: Cosine Accuracy@3
|
245 |
- type: cosine_accuracy@5
|
246 |
-
value: 0.
|
247 |
name: Cosine Accuracy@5
|
248 |
- type: cosine_accuracy@10
|
249 |
-
value: 0.
|
250 |
name: Cosine Accuracy@10
|
251 |
- type: cosine_precision@1
|
252 |
-
value: 0.
|
253 |
name: Cosine Precision@1
|
254 |
- type: cosine_precision@3
|
255 |
-
value: 0.
|
256 |
name: Cosine Precision@3
|
257 |
- type: cosine_precision@5
|
258 |
-
value: 0.
|
259 |
name: Cosine Precision@5
|
260 |
- type: cosine_precision@10
|
261 |
-
value: 0.
|
262 |
name: Cosine Precision@10
|
263 |
- type: cosine_recall@1
|
264 |
-
value: 0.
|
265 |
name: Cosine Recall@1
|
266 |
- type: cosine_recall@3
|
267 |
-
value: 0.
|
268 |
name: Cosine Recall@3
|
269 |
- type: cosine_recall@5
|
270 |
-
value: 0.
|
271 |
name: Cosine Recall@5
|
272 |
- type: cosine_recall@10
|
273 |
-
value: 0.
|
274 |
name: Cosine Recall@10
|
275 |
- type: cosine_ndcg@10
|
276 |
-
value: 0.
|
277 |
name: Cosine Ndcg@10
|
278 |
- type: cosine_mrr@10
|
279 |
-
value: 0.
|
280 |
name: Cosine Mrr@10
|
281 |
- type: cosine_map@100
|
282 |
-
value: 0.
|
283 |
name: Cosine Map@100
|
284 |
- task:
|
285 |
type: information-retrieval
|
@@ -289,49 +289,49 @@ model-index:
|
|
289 |
type: dim_128
|
290 |
metrics:
|
291 |
- type: cosine_accuracy@1
|
292 |
-
value: 0.
|
293 |
name: Cosine Accuracy@1
|
294 |
- type: cosine_accuracy@3
|
295 |
-
value: 0.
|
296 |
name: Cosine Accuracy@3
|
297 |
- type: cosine_accuracy@5
|
298 |
-
value: 0.
|
299 |
name: Cosine Accuracy@5
|
300 |
- type: cosine_accuracy@10
|
301 |
-
value: 0.
|
302 |
name: Cosine Accuracy@10
|
303 |
- type: cosine_precision@1
|
304 |
-
value: 0.
|
305 |
name: Cosine Precision@1
|
306 |
- type: cosine_precision@3
|
307 |
-
value: 0.
|
308 |
name: Cosine Precision@3
|
309 |
- type: cosine_precision@5
|
310 |
-
value: 0.
|
311 |
name: Cosine Precision@5
|
312 |
- type: cosine_precision@10
|
313 |
-
value: 0.
|
314 |
name: Cosine Precision@10
|
315 |
- type: cosine_recall@1
|
316 |
-
value: 0.
|
317 |
name: Cosine Recall@1
|
318 |
- type: cosine_recall@3
|
319 |
-
value: 0.
|
320 |
name: Cosine Recall@3
|
321 |
- type: cosine_recall@5
|
322 |
-
value: 0.
|
323 |
name: Cosine Recall@5
|
324 |
- type: cosine_recall@10
|
325 |
-
value: 0.
|
326 |
name: Cosine Recall@10
|
327 |
- type: cosine_ndcg@10
|
328 |
-
value: 0.
|
329 |
name: Cosine Ndcg@10
|
330 |
- type: cosine_mrr@10
|
331 |
-
value: 0.
|
332 |
name: Cosine Mrr@10
|
333 |
- type: cosine_map@100
|
334 |
-
value: 0.
|
335 |
name: Cosine Map@100
|
336 |
- task:
|
337 |
type: information-retrieval
|
@@ -341,10 +341,10 @@ model-index:
|
|
341 |
type: dim_64
|
342 |
metrics:
|
343 |
- type: cosine_accuracy@1
|
344 |
-
value: 0.
|
345 |
name: Cosine Accuracy@1
|
346 |
- type: cosine_accuracy@3
|
347 |
-
value: 0.
|
348 |
name: Cosine Accuracy@3
|
349 |
- type: cosine_accuracy@5
|
350 |
value: 0.8750754375377188
|
@@ -353,10 +353,10 @@ model-index:
|
|
353 |
value: 0.8974049487024743
|
354 |
name: Cosine Accuracy@10
|
355 |
- type: cosine_precision@1
|
356 |
-
value: 0.
|
357 |
name: Cosine Precision@1
|
358 |
- type: cosine_precision@3
|
359 |
-
value: 0.
|
360 |
name: Cosine Precision@3
|
361 |
- type: cosine_precision@5
|
362 |
value: 0.17501508750754374
|
@@ -365,10 +365,10 @@ model-index:
|
|
365 |
value: 0.08974049487024743
|
366 |
name: Cosine Precision@10
|
367 |
- type: cosine_recall@1
|
368 |
-
value: 0.
|
369 |
name: Cosine Recall@1
|
370 |
- type: cosine_recall@3
|
371 |
-
value: 0.
|
372 |
name: Cosine Recall@3
|
373 |
- type: cosine_recall@5
|
374 |
value: 0.8750754375377188
|
@@ -377,13 +377,13 @@ model-index:
|
|
377 |
value: 0.8974049487024743
|
378 |
name: Cosine Recall@10
|
379 |
- type: cosine_ndcg@10
|
380 |
-
value: 0.
|
381 |
name: Cosine Ndcg@10
|
382 |
- type: cosine_mrr@10
|
383 |
-
value: 0.
|
384 |
name: Cosine Mrr@10
|
385 |
- type: cosine_map@100
|
386 |
-
value: 0.
|
387 |
name: Cosine Map@100
|
388 |
---
|
389 |
|
@@ -583,21 +583,21 @@ You can finetune this model on your own dataset.
|
|
583 |
|
584 |
| Metric | Value |
|
585 |
|:--------------------|:-----------|
|
586 |
-
| cosine_accuracy@1 | 0.
|
587 |
-
| cosine_accuracy@3 | 0.
|
588 |
-
| cosine_accuracy@5 | 0.
|
589 |
-
| cosine_accuracy@10 | 0.
|
590 |
-
| cosine_precision@1 | 0.
|
591 |
-
| cosine_precision@3 | 0.
|
592 |
-
| cosine_precision@5 | 0.
|
593 |
-
| cosine_precision@10 | 0.
|
594 |
-
| cosine_recall@1 | 0.
|
595 |
-
| cosine_recall@3 | 0.
|
596 |
-
| cosine_recall@5 | 0.
|
597 |
-
| cosine_recall@10 | 0.
|
598 |
-
| **cosine_ndcg@10** | **0.
|
599 |
-
| cosine_mrr@10 | 0.
|
600 |
-
| cosine_map@100 | 0.
|
601 |
|
602 |
#### Information Retrieval
|
603 |
|
@@ -611,21 +611,21 @@ You can finetune this model on your own dataset.
|
|
611 |
|
612 |
| Metric | Value |
|
613 |
|:--------------------|:-----------|
|
614 |
-
| cosine_accuracy@1 | 0.
|
615 |
-
| cosine_accuracy@3 | 0.
|
616 |
-
| cosine_accuracy@5 | 0.
|
617 |
-
| cosine_accuracy@10 | 0.
|
618 |
-
| cosine_precision@1 | 0.
|
619 |
-
| cosine_precision@3 | 0.
|
620 |
-
| cosine_precision@5 | 0.
|
621 |
-
| cosine_precision@10 | 0.
|
622 |
-
| cosine_recall@1 | 0.
|
623 |
-
| cosine_recall@3 | 0.
|
624 |
-
| cosine_recall@5 | 0.
|
625 |
-
| cosine_recall@10 | 0.
|
626 |
-
| **cosine_ndcg@10** | **0.
|
627 |
-
| cosine_mrr@10 | 0.
|
628 |
-
| cosine_map@100 | 0.
|
629 |
|
630 |
#### Information Retrieval
|
631 |
|
@@ -639,21 +639,21 @@ You can finetune this model on your own dataset.
|
|
639 |
|
640 |
| Metric | Value |
|
641 |
|:--------------------|:-----------|
|
642 |
-
| cosine_accuracy@1 | 0.
|
643 |
-
| cosine_accuracy@3 | 0.
|
644 |
-
| cosine_accuracy@5 | 0.
|
645 |
-
| cosine_accuracy@10 | 0.
|
646 |
-
| cosine_precision@1 | 0.
|
647 |
-
| cosine_precision@3 | 0.
|
648 |
-
| cosine_precision@5 | 0.
|
649 |
-
| cosine_precision@10 | 0.
|
650 |
-
| cosine_recall@1 | 0.
|
651 |
-
| cosine_recall@3 | 0.
|
652 |
-
| cosine_recall@5 | 0.
|
653 |
-
| cosine_recall@10 | 0.
|
654 |
-
| **cosine_ndcg@10** | **0.
|
655 |
-
| cosine_mrr@10 | 0.
|
656 |
-
| cosine_map@100 | 0.
|
657 |
|
658 |
#### Information Retrieval
|
659 |
|
@@ -667,21 +667,21 @@ You can finetune this model on your own dataset.
|
|
667 |
|
668 |
| Metric | Value |
|
669 |
|:--------------------|:-----------|
|
670 |
-
| cosine_accuracy@1 | 0.
|
671 |
-
| cosine_accuracy@3 | 0.
|
672 |
-
| cosine_accuracy@5 | 0.
|
673 |
-
| cosine_accuracy@10 | 0.
|
674 |
-
| cosine_precision@1 | 0.
|
675 |
-
| cosine_precision@3 | 0.
|
676 |
-
| cosine_precision@5 | 0.
|
677 |
-
| cosine_precision@10 | 0.
|
678 |
-
| cosine_recall@1 | 0.
|
679 |
-
| cosine_recall@3 | 0.
|
680 |
-
| cosine_recall@5 | 0.
|
681 |
-
| cosine_recall@10 | 0.
|
682 |
-
| **cosine_ndcg@10** | **0.
|
683 |
-
| cosine_mrr@10 | 0.
|
684 |
-
| cosine_map@100 | 0.
|
685 |
|
686 |
#### Information Retrieval
|
687 |
|
@@ -695,21 +695,21 @@ You can finetune this model on your own dataset.
|
|
695 |
|
696 |
| Metric | Value |
|
697 |
|:--------------------|:-----------|
|
698 |
-
| cosine_accuracy@1 | 0.
|
699 |
-
| cosine_accuracy@3 | 0.
|
700 |
-
| cosine_accuracy@5 | 0.
|
701 |
-
| cosine_accuracy@10 | 0.
|
702 |
-
| cosine_precision@1 | 0.
|
703 |
-
| cosine_precision@3 | 0.
|
704 |
-
| cosine_precision@5 | 0.
|
705 |
-
| cosine_precision@10 | 0.
|
706 |
-
| cosine_recall@1 | 0.
|
707 |
-
| cosine_recall@3 | 0.
|
708 |
-
| cosine_recall@5 | 0.
|
709 |
-
| cosine_recall@10 | 0.
|
710 |
-
| **cosine_ndcg@10** | **0.
|
711 |
-
| cosine_mrr@10 | 0.
|
712 |
-
| cosine_map@100 | 0.
|
713 |
|
714 |
#### Information Retrieval
|
715 |
|
@@ -723,21 +723,21 @@ You can finetune this model on your own dataset.
|
|
723 |
|
724 |
| Metric | Value |
|
725 |
|:--------------------|:-----------|
|
726 |
-
| cosine_accuracy@1 | 0.
|
727 |
-
| cosine_accuracy@3 | 0.
|
728 |
| cosine_accuracy@5 | 0.8751 |
|
729 |
| cosine_accuracy@10 | 0.8974 |
|
730 |
-
| cosine_precision@1 | 0.
|
731 |
-
| cosine_precision@3 | 0.
|
732 |
| cosine_precision@5 | 0.175 |
|
733 |
| cosine_precision@10 | 0.0897 |
|
734 |
-
| cosine_recall@1 | 0.
|
735 |
-
| cosine_recall@3 | 0.
|
736 |
| cosine_recall@5 | 0.8751 |
|
737 |
| cosine_recall@10 | 0.8974 |
|
738 |
-
| **cosine_ndcg@10** | **0.
|
739 |
-
| cosine_mrr@10 | 0.
|
740 |
-
| cosine_map@100 | 0.
|
741 |
|
742 |
<!--
|
743 |
## Bias, Risks and Limitations
|
@@ -799,11 +799,11 @@ You can finetune this model on your own dataset.
|
|
799 |
#### Non-Default Hyperparameters
|
800 |
|
801 |
- `eval_strategy`: epoch
|
802 |
-
- `per_device_train_batch_size`:
|
803 |
- `per_device_eval_batch_size`: 16
|
804 |
-
- `gradient_accumulation_steps`:
|
805 |
- `learning_rate`: 2e-05
|
806 |
-
- `num_train_epochs`:
|
807 |
- `lr_scheduler_type`: cosine
|
808 |
- `warmup_ratio`: 0.1
|
809 |
- `tf32`: True
|
@@ -818,11 +818,11 @@ You can finetune this model on your own dataset.
|
|
818 |
- `do_predict`: False
|
819 |
- `eval_strategy`: epoch
|
820 |
- `prediction_loss_only`: True
|
821 |
-
- `per_device_train_batch_size`:
|
822 |
- `per_device_eval_batch_size`: 16
|
823 |
- `per_gpu_train_batch_size`: None
|
824 |
- `per_gpu_eval_batch_size`: None
|
825 |
-
- `gradient_accumulation_steps`:
|
826 |
- `eval_accumulation_steps`: None
|
827 |
- `torch_empty_cache_steps`: None
|
828 |
- `learning_rate`: 2e-05
|
@@ -831,7 +831,7 @@ You can finetune this model on your own dataset.
|
|
831 |
- `adam_beta2`: 0.999
|
832 |
- `adam_epsilon`: 1e-08
|
833 |
- `max_grad_norm`: 1.0
|
834 |
-
- `num_train_epochs`:
|
835 |
- `max_steps`: -1
|
836 |
- `lr_scheduler_type`: cosine
|
837 |
- `lr_scheduler_kwargs`: {}
|
@@ -932,20 +932,25 @@ You can finetune this model on your own dataset.
|
|
932 |
</details>
|
933 |
|
934 |
### Training Logs
|
935 |
-
| Epoch
|
936 |
-
|
937 |
-
| 0
|
938 |
-
|
|
939 |
-
|
|
940 |
-
|
|
941 |
-
|
|
942 |
-
|
|
943 |
-
|
|
944 |
-
|
|
945 |
-
|
|
946 |
-
|
|
947 |
-
|
|
948 |
-
|
|
|
|
|
|
|
|
|
|
|
|
949 |
|
950 |
|
951 |
### Framework Versions
|
|
|
81 |
type: dim_1024
|
82 |
metrics:
|
83 |
- type: cosine_accuracy@1
|
84 |
+
value: 0.7803258901629451
|
85 |
name: Cosine Accuracy@1
|
86 |
- type: cosine_accuracy@3
|
87 |
+
value: 0.8883524441762221
|
88 |
name: Cosine Accuracy@3
|
89 |
- type: cosine_accuracy@5
|
90 |
+
value: 0.904043452021726
|
91 |
name: Cosine Accuracy@5
|
92 |
- type: cosine_accuracy@10
|
93 |
+
value: 0.9233554616777309
|
94 |
name: Cosine Accuracy@10
|
95 |
- type: cosine_precision@1
|
96 |
+
value: 0.7803258901629451
|
97 |
name: Cosine Precision@1
|
98 |
- type: cosine_precision@3
|
99 |
+
value: 0.29611748139207406
|
100 |
name: Cosine Precision@3
|
101 |
- type: cosine_precision@5
|
102 |
+
value: 0.18080869040434522
|
103 |
name: Cosine Precision@5
|
104 |
- type: cosine_precision@10
|
105 |
+
value: 0.09233554616777308
|
106 |
name: Cosine Precision@10
|
107 |
- type: cosine_recall@1
|
108 |
+
value: 0.7803258901629451
|
109 |
name: Cosine Recall@1
|
110 |
- type: cosine_recall@3
|
111 |
+
value: 0.8883524441762221
|
112 |
name: Cosine Recall@3
|
113 |
- type: cosine_recall@5
|
114 |
+
value: 0.904043452021726
|
115 |
name: Cosine Recall@5
|
116 |
- type: cosine_recall@10
|
117 |
+
value: 0.9233554616777309
|
118 |
name: Cosine Recall@10
|
119 |
- type: cosine_ndcg@10
|
120 |
+
value: 0.8576141434466037
|
121 |
name: Cosine Ndcg@10
|
122 |
- type: cosine_mrr@10
|
123 |
+
value: 0.8359425142014155
|
124 |
name: Cosine Mrr@10
|
125 |
- type: cosine_map@100
|
126 |
+
value: 0.8374344979701236
|
127 |
name: Cosine Map@100
|
128 |
- task:
|
129 |
type: information-retrieval
|
|
|
133 |
type: dim_768
|
134 |
metrics:
|
135 |
- type: cosine_accuracy@1
|
136 |
+
value: 0.7827398913699457
|
137 |
name: Cosine Accuracy@1
|
138 |
- type: cosine_accuracy@3
|
139 |
+
value: 0.8877489438744719
|
140 |
name: Cosine Accuracy@3
|
141 |
- type: cosine_accuracy@5
|
142 |
+
value: 0.9034399517199758
|
143 |
name: Cosine Accuracy@5
|
144 |
- type: cosine_accuracy@10
|
145 |
+
value: 0.9245624622812312
|
146 |
name: Cosine Accuracy@10
|
147 |
- type: cosine_precision@1
|
148 |
+
value: 0.7827398913699457
|
149 |
name: Cosine Precision@1
|
150 |
- type: cosine_precision@3
|
151 |
+
value: 0.295916314624824
|
152 |
name: Cosine Precision@3
|
153 |
- type: cosine_precision@5
|
154 |
+
value: 0.18068799034399516
|
155 |
name: Cosine Precision@5
|
156 |
- type: cosine_precision@10
|
157 |
+
value: 0.09245624622812311
|
158 |
name: Cosine Precision@10
|
159 |
- type: cosine_recall@1
|
160 |
+
value: 0.7827398913699457
|
161 |
name: Cosine Recall@1
|
162 |
- type: cosine_recall@3
|
163 |
+
value: 0.8877489438744719
|
164 |
name: Cosine Recall@3
|
165 |
- type: cosine_recall@5
|
166 |
+
value: 0.9034399517199758
|
167 |
name: Cosine Recall@5
|
168 |
- type: cosine_recall@10
|
169 |
+
value: 0.9245624622812312
|
170 |
name: Cosine Recall@10
|
171 |
- type: cosine_ndcg@10
|
172 |
+
value: 0.858770916125463
|
173 |
name: Cosine Ndcg@10
|
174 |
- type: cosine_mrr@10
|
175 |
+
value: 0.8371705894186279
|
176 |
name: Cosine Mrr@10
|
177 |
- type: cosine_map@100
|
178 |
+
value: 0.8385437636605255
|
179 |
name: Cosine Map@100
|
180 |
- task:
|
181 |
type: information-retrieval
|
|
|
185 |
type: dim_512
|
186 |
metrics:
|
187 |
- type: cosine_accuracy@1
|
188 |
+
value: 0.7797223898611949
|
189 |
name: Cosine Accuracy@1
|
190 |
- type: cosine_accuracy@3
|
191 |
+
value: 0.8859384429692215
|
192 |
name: Cosine Accuracy@3
|
193 |
- type: cosine_accuracy@5
|
194 |
+
value: 0.9010259505129753
|
195 |
name: Cosine Accuracy@5
|
196 |
- type: cosine_accuracy@10
|
197 |
+
value: 0.9227519613759807
|
198 |
name: Cosine Accuracy@10
|
199 |
- type: cosine_precision@1
|
200 |
+
value: 0.7797223898611949
|
201 |
name: Cosine Precision@1
|
202 |
- type: cosine_precision@3
|
203 |
+
value: 0.2953128143230738
|
204 |
name: Cosine Precision@3
|
205 |
- type: cosine_precision@5
|
206 |
+
value: 0.18020519010259503
|
207 |
name: Cosine Precision@5
|
208 |
- type: cosine_precision@10
|
209 |
+
value: 0.09227519613759806
|
210 |
name: Cosine Precision@10
|
211 |
- type: cosine_recall@1
|
212 |
+
value: 0.7797223898611949
|
213 |
name: Cosine Recall@1
|
214 |
- type: cosine_recall@3
|
215 |
+
value: 0.8859384429692215
|
216 |
name: Cosine Recall@3
|
217 |
- type: cosine_recall@5
|
218 |
+
value: 0.9010259505129753
|
219 |
name: Cosine Recall@5
|
220 |
- type: cosine_recall@10
|
221 |
+
value: 0.9227519613759807
|
222 |
name: Cosine Recall@10
|
223 |
- type: cosine_ndcg@10
|
224 |
+
value: 0.8564496755344808
|
225 |
name: Cosine Ndcg@10
|
226 |
- type: cosine_mrr@10
|
227 |
+
value: 0.8346785163471941
|
228 |
name: Cosine Mrr@10
|
229 |
- type: cosine_map@100
|
230 |
+
value: 0.8361853082918266
|
231 |
name: Cosine Map@100
|
232 |
- task:
|
233 |
type: information-retrieval
|
|
|
237 |
type: dim_256
|
238 |
metrics:
|
239 |
- type: cosine_accuracy@1
|
240 |
+
value: 0.7706698853349426
|
241 |
name: Cosine Accuracy@1
|
242 |
- type: cosine_accuracy@3
|
243 |
+
value: 0.8823174411587206
|
244 |
name: Cosine Accuracy@3
|
245 |
- type: cosine_accuracy@5
|
246 |
+
value: 0.9016294508147255
|
247 |
name: Cosine Accuracy@5
|
248 |
- type: cosine_accuracy@10
|
249 |
+
value: 0.9191309595654797
|
250 |
name: Cosine Accuracy@10
|
251 |
- type: cosine_precision@1
|
252 |
+
value: 0.7706698853349426
|
253 |
name: Cosine Precision@1
|
254 |
- type: cosine_precision@3
|
255 |
+
value: 0.2941058137195735
|
256 |
name: Cosine Precision@3
|
257 |
- type: cosine_precision@5
|
258 |
+
value: 0.18032589016294506
|
259 |
name: Cosine Precision@5
|
260 |
- type: cosine_precision@10
|
261 |
+
value: 0.09191309595654798
|
262 |
name: Cosine Precision@10
|
263 |
- type: cosine_recall@1
|
264 |
+
value: 0.7706698853349426
|
265 |
name: Cosine Recall@1
|
266 |
- type: cosine_recall@3
|
267 |
+
value: 0.8823174411587206
|
268 |
name: Cosine Recall@3
|
269 |
- type: cosine_recall@5
|
270 |
+
value: 0.9016294508147255
|
271 |
name: Cosine Recall@5
|
272 |
- type: cosine_recall@10
|
273 |
+
value: 0.9191309595654797
|
274 |
name: Cosine Recall@10
|
275 |
- type: cosine_ndcg@10
|
276 |
+
value: 0.851155539622205
|
277 |
name: Cosine Ndcg@10
|
278 |
- type: cosine_mrr@10
|
279 |
+
value: 0.8286940445057519
|
280 |
name: Cosine Mrr@10
|
281 |
- type: cosine_map@100
|
282 |
+
value: 0.8302805177061129
|
283 |
name: Cosine Map@100
|
284 |
- task:
|
285 |
type: information-retrieval
|
|
|
289 |
type: dim_128
|
290 |
metrics:
|
291 |
- type: cosine_accuracy@1
|
292 |
+
value: 0.7604103802051901
|
293 |
name: Cosine Accuracy@1
|
294 |
- type: cosine_accuracy@3
|
295 |
+
value: 0.8690404345202173
|
296 |
name: Cosine Accuracy@3
|
297 |
- type: cosine_accuracy@5
|
298 |
+
value: 0.8901629450814725
|
299 |
name: Cosine Accuracy@5
|
300 |
- type: cosine_accuracy@10
|
301 |
+
value: 0.9130959565479783
|
302 |
name: Cosine Accuracy@10
|
303 |
- type: cosine_precision@1
|
304 |
+
value: 0.7604103802051901
|
305 |
name: Cosine Precision@1
|
306 |
- type: cosine_precision@3
|
307 |
+
value: 0.28968014484007243
|
308 |
name: Cosine Precision@3
|
309 |
- type: cosine_precision@5
|
310 |
+
value: 0.1780325890162945
|
311 |
name: Cosine Precision@5
|
312 |
- type: cosine_precision@10
|
313 |
+
value: 0.09130959565479783
|
314 |
name: Cosine Precision@10
|
315 |
- type: cosine_recall@1
|
316 |
+
value: 0.7604103802051901
|
317 |
name: Cosine Recall@1
|
318 |
- type: cosine_recall@3
|
319 |
+
value: 0.8690404345202173
|
320 |
name: Cosine Recall@3
|
321 |
- type: cosine_recall@5
|
322 |
+
value: 0.8901629450814725
|
323 |
name: Cosine Recall@5
|
324 |
- type: cosine_recall@10
|
325 |
+
value: 0.9130959565479783
|
326 |
name: Cosine Recall@10
|
327 |
- type: cosine_ndcg@10
|
328 |
+
value: 0.8415141158022221
|
329 |
name: Cosine Ndcg@10
|
330 |
- type: cosine_mrr@10
|
331 |
+
value: 0.8181217729497756
|
332 |
name: Cosine Mrr@10
|
333 |
- type: cosine_map@100
|
334 |
+
value: 0.8199539602494803
|
335 |
name: Cosine Map@100
|
336 |
- task:
|
337 |
type: information-retrieval
|
|
|
341 |
type: dim_64
|
342 |
metrics:
|
343 |
- type: cosine_accuracy@1
|
344 |
+
value: 0.7248038624019312
|
345 |
name: Cosine Accuracy@1
|
346 |
- type: cosine_accuracy@3
|
347 |
+
value: 0.852142426071213
|
348 |
name: Cosine Accuracy@3
|
349 |
- type: cosine_accuracy@5
|
350 |
value: 0.8750754375377188
|
|
|
353 |
value: 0.8974049487024743
|
354 |
name: Cosine Accuracy@10
|
355 |
- type: cosine_precision@1
|
356 |
+
value: 0.7248038624019312
|
357 |
name: Cosine Precision@1
|
358 |
- type: cosine_precision@3
|
359 |
+
value: 0.28404747535707103
|
360 |
name: Cosine Precision@3
|
361 |
- type: cosine_precision@5
|
362 |
value: 0.17501508750754374
|
|
|
365 |
value: 0.08974049487024743
|
366 |
name: Cosine Precision@10
|
367 |
- type: cosine_recall@1
|
368 |
+
value: 0.7248038624019312
|
369 |
name: Cosine Recall@1
|
370 |
- type: cosine_recall@3
|
371 |
+
value: 0.852142426071213
|
372 |
name: Cosine Recall@3
|
373 |
- type: cosine_recall@5
|
374 |
value: 0.8750754375377188
|
|
|
377 |
value: 0.8974049487024743
|
378 |
name: Cosine Recall@10
|
379 |
- type: cosine_ndcg@10
|
380 |
+
value: 0.8181789750224895
|
381 |
name: Cosine Ndcg@10
|
382 |
- type: cosine_mrr@10
|
383 |
+
value: 0.7920167926353802
|
384 |
name: Cosine Mrr@10
|
385 |
- type: cosine_map@100
|
386 |
+
value: 0.793825252598125
|
387 |
name: Cosine Map@100
|
388 |
---
|
389 |
|
|
|
583 |
|
584 |
| Metric | Value |
|
585 |
|:--------------------|:-----------|
|
586 |
+
| cosine_accuracy@1 | 0.7803 |
|
587 |
+
| cosine_accuracy@3 | 0.8884 |
|
588 |
+
| cosine_accuracy@5 | 0.904 |
|
589 |
+
| cosine_accuracy@10 | 0.9234 |
|
590 |
+
| cosine_precision@1 | 0.7803 |
|
591 |
+
| cosine_precision@3 | 0.2961 |
|
592 |
+
| cosine_precision@5 | 0.1808 |
|
593 |
+
| cosine_precision@10 | 0.0923 |
|
594 |
+
| cosine_recall@1 | 0.7803 |
|
595 |
+
| cosine_recall@3 | 0.8884 |
|
596 |
+
| cosine_recall@5 | 0.904 |
|
597 |
+
| cosine_recall@10 | 0.9234 |
|
598 |
+
| **cosine_ndcg@10** | **0.8576** |
|
599 |
+
| cosine_mrr@10 | 0.8359 |
|
600 |
+
| cosine_map@100 | 0.8374 |
|
601 |
|
602 |
#### Information Retrieval
|
603 |
|
|
|
611 |
|
612 |
| Metric | Value |
|
613 |
|:--------------------|:-----------|
|
614 |
+
| cosine_accuracy@1 | 0.7827 |
|
615 |
+
| cosine_accuracy@3 | 0.8877 |
|
616 |
+
| cosine_accuracy@5 | 0.9034 |
|
617 |
+
| cosine_accuracy@10 | 0.9246 |
|
618 |
+
| cosine_precision@1 | 0.7827 |
|
619 |
+
| cosine_precision@3 | 0.2959 |
|
620 |
+
| cosine_precision@5 | 0.1807 |
|
621 |
+
| cosine_precision@10 | 0.0925 |
|
622 |
+
| cosine_recall@1 | 0.7827 |
|
623 |
+
| cosine_recall@3 | 0.8877 |
|
624 |
+
| cosine_recall@5 | 0.9034 |
|
625 |
+
| cosine_recall@10 | 0.9246 |
|
626 |
+
| **cosine_ndcg@10** | **0.8588** |
|
627 |
+
| cosine_mrr@10 | 0.8372 |
|
628 |
+
| cosine_map@100 | 0.8385 |
|
629 |
|
630 |
#### Information Retrieval
|
631 |
|
|
|
639 |
|
640 |
| Metric | Value |
|
641 |
|:--------------------|:-----------|
|
642 |
+
| cosine_accuracy@1 | 0.7797 |
|
643 |
+
| cosine_accuracy@3 | 0.8859 |
|
644 |
+
| cosine_accuracy@5 | 0.901 |
|
645 |
+
| cosine_accuracy@10 | 0.9228 |
|
646 |
+
| cosine_precision@1 | 0.7797 |
|
647 |
+
| cosine_precision@3 | 0.2953 |
|
648 |
+
| cosine_precision@5 | 0.1802 |
|
649 |
+
| cosine_precision@10 | 0.0923 |
|
650 |
+
| cosine_recall@1 | 0.7797 |
|
651 |
+
| cosine_recall@3 | 0.8859 |
|
652 |
+
| cosine_recall@5 | 0.901 |
|
653 |
+
| cosine_recall@10 | 0.9228 |
|
654 |
+
| **cosine_ndcg@10** | **0.8564** |
|
655 |
+
| cosine_mrr@10 | 0.8347 |
|
656 |
+
| cosine_map@100 | 0.8362 |
|
657 |
|
658 |
#### Information Retrieval
|
659 |
|
|
|
667 |
|
668 |
| Metric | Value |
|
669 |
|:--------------------|:-----------|
|
670 |
+
| cosine_accuracy@1 | 0.7707 |
|
671 |
+
| cosine_accuracy@3 | 0.8823 |
|
672 |
+
| cosine_accuracy@5 | 0.9016 |
|
673 |
+
| cosine_accuracy@10 | 0.9191 |
|
674 |
+
| cosine_precision@1 | 0.7707 |
|
675 |
+
| cosine_precision@3 | 0.2941 |
|
676 |
+
| cosine_precision@5 | 0.1803 |
|
677 |
+
| cosine_precision@10 | 0.0919 |
|
678 |
+
| cosine_recall@1 | 0.7707 |
|
679 |
+
| cosine_recall@3 | 0.8823 |
|
680 |
+
| cosine_recall@5 | 0.9016 |
|
681 |
+
| cosine_recall@10 | 0.9191 |
|
682 |
+
| **cosine_ndcg@10** | **0.8512** |
|
683 |
+
| cosine_mrr@10 | 0.8287 |
|
684 |
+
| cosine_map@100 | 0.8303 |
|
685 |
|
686 |
#### Information Retrieval
|
687 |
|
|
|
695 |
|
696 |
| Metric | Value |
|
697 |
|:--------------------|:-----------|
|
698 |
+
| cosine_accuracy@1 | 0.7604 |
|
699 |
+
| cosine_accuracy@3 | 0.869 |
|
700 |
+
| cosine_accuracy@5 | 0.8902 |
|
701 |
+
| cosine_accuracy@10 | 0.9131 |
|
702 |
+
| cosine_precision@1 | 0.7604 |
|
703 |
+
| cosine_precision@3 | 0.2897 |
|
704 |
+
| cosine_precision@5 | 0.178 |
|
705 |
+
| cosine_precision@10 | 0.0913 |
|
706 |
+
| cosine_recall@1 | 0.7604 |
|
707 |
+
| cosine_recall@3 | 0.869 |
|
708 |
+
| cosine_recall@5 | 0.8902 |
|
709 |
+
| cosine_recall@10 | 0.9131 |
|
710 |
+
| **cosine_ndcg@10** | **0.8415** |
|
711 |
+
| cosine_mrr@10 | 0.8181 |
|
712 |
+
| cosine_map@100 | 0.82 |
|
713 |
|
714 |
#### Information Retrieval
|
715 |
|
|
|
723 |
|
724 |
| Metric | Value |
|
725 |
|:--------------------|:-----------|
|
726 |
+
| cosine_accuracy@1 | 0.7248 |
|
727 |
+
| cosine_accuracy@3 | 0.8521 |
|
728 |
| cosine_accuracy@5 | 0.8751 |
|
729 |
| cosine_accuracy@10 | 0.8974 |
|
730 |
+
| cosine_precision@1 | 0.7248 |
|
731 |
+
| cosine_precision@3 | 0.284 |
|
732 |
| cosine_precision@5 | 0.175 |
|
733 |
| cosine_precision@10 | 0.0897 |
|
734 |
+
| cosine_recall@1 | 0.7248 |
|
735 |
+
| cosine_recall@3 | 0.8521 |
|
736 |
| cosine_recall@5 | 0.8751 |
|
737 |
| cosine_recall@10 | 0.8974 |
|
738 |
+
| **cosine_ndcg@10** | **0.8182** |
|
739 |
+
| cosine_mrr@10 | 0.792 |
|
740 |
+
| cosine_map@100 | 0.7938 |
|
741 |
|
742 |
<!--
|
743 |
## Bias, Risks and Limitations
|
|
|
799 |
#### Non-Default Hyperparameters
|
800 |
|
801 |
- `eval_strategy`: epoch
|
802 |
+
- `per_device_train_batch_size`: 64
|
803 |
- `per_device_eval_batch_size`: 16
|
804 |
+
- `gradient_accumulation_steps`: 32
|
805 |
- `learning_rate`: 2e-05
|
806 |
+
- `num_train_epochs`: 12
|
807 |
- `lr_scheduler_type`: cosine
|
808 |
- `warmup_ratio`: 0.1
|
809 |
- `tf32`: True
|
|
|
818 |
- `do_predict`: False
|
819 |
- `eval_strategy`: epoch
|
820 |
- `prediction_loss_only`: True
|
821 |
+
- `per_device_train_batch_size`: 64
|
822 |
- `per_device_eval_batch_size`: 16
|
823 |
- `per_gpu_train_batch_size`: None
|
824 |
- `per_gpu_eval_batch_size`: None
|
825 |
+
- `gradient_accumulation_steps`: 32
|
826 |
- `eval_accumulation_steps`: None
|
827 |
- `torch_empty_cache_steps`: None
|
828 |
- `learning_rate`: 2e-05
|
|
|
831 |
- `adam_beta2`: 0.999
|
832 |
- `adam_epsilon`: 1e-08
|
833 |
- `max_grad_norm`: 1.0
|
834 |
+
- `num_train_epochs`: 12
|
835 |
- `max_steps`: -1
|
836 |
- `lr_scheduler_type`: cosine
|
837 |
- `lr_scheduler_kwargs`: {}
|
|
|
932 |
</details>
|
933 |
|
934 |
### Training Logs
|
935 |
+
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
936 |
+
|:-------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
937 |
+
| 1.0 | 8 | - | 0.7663 | 0.7676 | 0.7656 | 0.7626 | 0.7393 | 0.6969 |
|
938 |
+
| 1.2747 | 10 | 127.0406 | - | - | - | - | - | - |
|
939 |
+
| 2.0 | 16 | - | 0.8244 | 0.8240 | 0.8226 | 0.8172 | 0.8060 | 0.7775 |
|
940 |
+
| 2.5494 | 20 | 38.8995 | - | - | - | - | - | - |
|
941 |
+
| 3.0 | 24 | - | 0.8425 | 0.8426 | 0.8444 | 0.8373 | 0.8252 | 0.7996 |
|
942 |
+
| 3.8240 | 30 | 20.1528 | - | - | - | - | - | - |
|
943 |
+
| 4.0 | 32 | - | 0.8526 | 0.8520 | 0.8498 | 0.8456 | 0.8289 | 0.8037 |
|
944 |
+
| 5.0 | 40 | 14.0513 | 0.8550 | 0.8543 | 0.8517 | 0.8490 | 0.8368 | 0.8139 |
|
945 |
+
| 6.0 | 48 | - | 0.8572 | 0.8565 | 0.8557 | 0.8520 | 0.8404 | 0.8170 |
|
946 |
+
| 6.2747 | 50 | 13.364 | - | - | - | - | - | - |
|
947 |
+
| 7.0 | 56 | - | 0.8579 | 0.8576 | 0.8553 | 0.8514 | 0.8422 | 0.8180 |
|
948 |
+
| 7.5494 | 60 | 12.7986 | - | - | - | - | - | - |
|
949 |
+
| 8.0 | 64 | - | 0.8573 | 0.8580 | 0.8560 | 0.8523 | 0.8414 | 0.8178 |
|
950 |
+
| 8.8240 | 70 | 12.0091 | - | - | - | - | - | - |
|
951 |
+
| 9.0 | 72 | - | 0.8578 | 0.8586 | 0.8562 | 0.8519 | 0.8423 | 0.8184 |
|
952 |
+
| 10.0 | 80 | 10.9468 | 0.8583 | 0.8589 | 0.8565 | 0.8530 | 0.8413 | 0.8191 |
|
953 |
+
| 10.5494 | 84 | - | 0.8576 | 0.8588 | 0.8564 | 0.8512 | 0.8415 | 0.8182 |
|
954 |
|
955 |
|
956 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1144685320
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cd81a650c2cc7b04eb39dc3d7523ba382d3823d3718c2f3afce2192fd4b074b
|
3 |
size 1144685320
|