csanz91 commited on
Commit
f9489e0
·
verified ·
1 Parent(s): 09126c7

Add new SentenceTransformer model

Browse files
Files changed (2) hide show
  1. README.md +193 -188
  2. model.safetensors +1 -1
README.md CHANGED
@@ -81,49 +81,49 @@ model-index:
81
  type: dim_1024
82
  metrics:
83
  - type: cosine_accuracy@1
84
- value: 0.771876885938443
85
  name: Cosine Accuracy@1
86
  - type: cosine_accuracy@3
87
- value: 0.8931804465902233
88
  name: Cosine Accuracy@3
89
  - type: cosine_accuracy@5
90
- value: 0.9136994568497284
91
  name: Cosine Accuracy@5
92
  - type: cosine_accuracy@10
93
- value: 0.928183464091732
94
  name: Cosine Accuracy@10
95
  - type: cosine_precision@1
96
- value: 0.771876885938443
97
  name: Cosine Precision@1
98
  - type: cosine_precision@3
99
- value: 0.2977268155300744
100
  name: Cosine Precision@3
101
  - type: cosine_precision@5
102
- value: 0.18273989136994565
103
  name: Cosine Precision@5
104
  - type: cosine_precision@10
105
- value: 0.0928183464091732
106
  name: Cosine Precision@10
107
  - type: cosine_recall@1
108
- value: 0.771876885938443
109
  name: Cosine Recall@1
110
  - type: cosine_recall@3
111
- value: 0.8931804465902233
112
  name: Cosine Recall@3
113
  - type: cosine_recall@5
114
- value: 0.9136994568497284
115
  name: Cosine Recall@5
116
  - type: cosine_recall@10
117
- value: 0.928183464091732
118
  name: Cosine Recall@10
119
  - type: cosine_ndcg@10
120
- value: 0.8567624282543636
121
  name: Cosine Ndcg@10
122
  - type: cosine_mrr@10
123
- value: 0.8330754087996087
124
  name: Cosine Mrr@10
125
  - type: cosine_map@100
126
- value: 0.8344062726339423
127
  name: Cosine Map@100
128
  - task:
129
  type: information-retrieval
@@ -133,49 +133,49 @@ model-index:
133
  type: dim_768
134
  metrics:
135
  - type: cosine_accuracy@1
136
- value: 0.7706698853349426
137
  name: Cosine Accuracy@1
138
  - type: cosine_accuracy@3
139
- value: 0.8925769462884732
140
  name: Cosine Accuracy@3
141
  - type: cosine_accuracy@5
142
- value: 0.9118889559444779
143
  name: Cosine Accuracy@5
144
  - type: cosine_accuracy@10
145
- value: 0.9287869643934822
146
  name: Cosine Accuracy@10
147
  - type: cosine_precision@1
148
- value: 0.7706698853349426
149
  name: Cosine Precision@1
150
  - type: cosine_precision@3
151
- value: 0.2975256487628244
152
  name: Cosine Precision@3
153
  - type: cosine_precision@5
154
- value: 0.18237779118889558
155
  name: Cosine Precision@5
156
  - type: cosine_precision@10
157
- value: 0.09287869643934822
158
  name: Cosine Precision@10
159
  - type: cosine_recall@1
160
- value: 0.7706698853349426
161
  name: Cosine Recall@1
162
  - type: cosine_recall@3
163
- value: 0.8925769462884732
164
  name: Cosine Recall@3
165
  - type: cosine_recall@5
166
- value: 0.9118889559444779
167
  name: Cosine Recall@5
168
  - type: cosine_recall@10
169
- value: 0.9287869643934822
170
  name: Cosine Recall@10
171
  - type: cosine_ndcg@10
172
- value: 0.8563506024476554
173
  name: Cosine Ndcg@10
174
  - type: cosine_mrr@10
175
- value: 0.8323629431655981
176
  name: Cosine Mrr@10
177
  - type: cosine_map@100
178
- value: 0.8335898787409641
179
  name: Cosine Map@100
180
  - task:
181
  type: information-retrieval
@@ -185,49 +185,49 @@ model-index:
185
  type: dim_512
186
  metrics:
187
  - type: cosine_accuracy@1
188
- value: 0.7682558841279421
189
  name: Cosine Accuracy@1
190
  - type: cosine_accuracy@3
191
- value: 0.891973445986723
192
  name: Cosine Accuracy@3
193
  - type: cosine_accuracy@5
194
- value: 0.9106819553409776
195
  name: Cosine Accuracy@5
196
  - type: cosine_accuracy@10
197
- value: 0.9299939649969825
198
  name: Cosine Accuracy@10
199
  - type: cosine_precision@1
200
- value: 0.7682558841279421
201
  name: Cosine Precision@1
202
  - type: cosine_precision@3
203
- value: 0.2973244819955743
204
  name: Cosine Precision@3
205
  - type: cosine_precision@5
206
- value: 0.1821363910681955
207
  name: Cosine Precision@5
208
  - type: cosine_precision@10
209
- value: 0.09299939649969825
210
  name: Cosine Precision@10
211
  - type: cosine_recall@1
212
- value: 0.7682558841279421
213
  name: Cosine Recall@1
214
  - type: cosine_recall@3
215
- value: 0.891973445986723
216
  name: Cosine Recall@3
217
  - type: cosine_recall@5
218
- value: 0.9106819553409776
219
  name: Cosine Recall@5
220
  - type: cosine_recall@10
221
- value: 0.9299939649969825
222
  name: Cosine Recall@10
223
  - type: cosine_ndcg@10
224
- value: 0.8553875428985249
225
  name: Cosine Ndcg@10
226
  - type: cosine_mrr@10
227
- value: 0.8307586381967789
228
  name: Cosine Mrr@10
229
  - type: cosine_map@100
230
- value: 0.8318464309684749
231
  name: Cosine Map@100
232
  - task:
233
  type: information-retrieval
@@ -237,49 +237,49 @@ model-index:
237
  type: dim_256
238
  metrics:
239
  - type: cosine_accuracy@1
240
- value: 0.7646348823174411
241
  name: Cosine Accuracy@1
242
  - type: cosine_accuracy@3
243
- value: 0.8883524441762221
244
  name: Cosine Accuracy@3
245
  - type: cosine_accuracy@5
246
- value: 0.9058539529269765
247
  name: Cosine Accuracy@5
248
  - type: cosine_accuracy@10
249
- value: 0.9251659625829813
250
  name: Cosine Accuracy@10
251
  - type: cosine_precision@1
252
- value: 0.7646348823174411
253
  name: Cosine Precision@1
254
  - type: cosine_precision@3
255
- value: 0.296117481392074
256
  name: Cosine Precision@3
257
  - type: cosine_precision@5
258
- value: 0.18117079058539529
259
  name: Cosine Precision@5
260
  - type: cosine_precision@10
261
- value: 0.09251659625829814
262
  name: Cosine Precision@10
263
  - type: cosine_recall@1
264
- value: 0.7646348823174411
265
  name: Cosine Recall@1
266
  - type: cosine_recall@3
267
- value: 0.8883524441762221
268
  name: Cosine Recall@3
269
  - type: cosine_recall@5
270
- value: 0.9058539529269765
271
  name: Cosine Recall@5
272
  - type: cosine_recall@10
273
- value: 0.9251659625829813
274
  name: Cosine Recall@10
275
  - type: cosine_ndcg@10
276
- value: 0.8515592939892533
277
  name: Cosine Ndcg@10
278
  - type: cosine_mrr@10
279
- value: 0.827186251688363
280
  name: Cosine Mrr@10
281
  - type: cosine_map@100
282
- value: 0.8285316886087458
283
  name: Cosine Map@100
284
  - task:
285
  type: information-retrieval
@@ -289,49 +289,49 @@ model-index:
289
  type: dim_128
290
  metrics:
291
  - type: cosine_accuracy@1
292
- value: 0.7531683765841883
293
  name: Cosine Accuracy@1
294
  - type: cosine_accuracy@3
295
- value: 0.8774894387447194
296
  name: Cosine Accuracy@3
297
  - type: cosine_accuracy@5
298
- value: 0.8968014484007242
299
  name: Cosine Accuracy@5
300
  - type: cosine_accuracy@10
301
- value: 0.9161134580567291
302
  name: Cosine Accuracy@10
303
  - type: cosine_precision@1
304
- value: 0.7531683765841883
305
  name: Cosine Precision@1
306
  - type: cosine_precision@3
307
- value: 0.2924964795815731
308
  name: Cosine Precision@3
309
  - type: cosine_precision@5
310
- value: 0.17936028968014484
311
  name: Cosine Precision@5
312
  - type: cosine_precision@10
313
- value: 0.09161134580567289
314
  name: Cosine Precision@10
315
  - type: cosine_recall@1
316
- value: 0.7531683765841883
317
  name: Cosine Recall@1
318
  - type: cosine_recall@3
319
- value: 0.8774894387447194
320
  name: Cosine Recall@3
321
  - type: cosine_recall@5
322
- value: 0.8968014484007242
323
  name: Cosine Recall@5
324
  - type: cosine_recall@10
325
- value: 0.9161134580567291
326
  name: Cosine Recall@10
327
  - type: cosine_ndcg@10
328
- value: 0.8412352149980756
329
  name: Cosine Ndcg@10
330
  - type: cosine_mrr@10
331
- value: 0.8165177074652028
332
  name: Cosine Mrr@10
333
  - type: cosine_map@100
334
- value: 0.8182055440879425
335
  name: Cosine Map@100
336
  - task:
337
  type: information-retrieval
@@ -341,10 +341,10 @@ model-index:
341
  type: dim_64
342
  metrics:
343
  - type: cosine_accuracy@1
344
- value: 0.7109233554616777
345
  name: Cosine Accuracy@1
346
  - type: cosine_accuracy@3
347
- value: 0.8503319251659626
348
  name: Cosine Accuracy@3
349
  - type: cosine_accuracy@5
350
  value: 0.8750754375377188
@@ -353,10 +353,10 @@ model-index:
353
  value: 0.8974049487024743
354
  name: Cosine Accuracy@10
355
  - type: cosine_precision@1
356
- value: 0.7109233554616777
357
  name: Cosine Precision@1
358
  - type: cosine_precision@3
359
- value: 0.2834439750553209
360
  name: Cosine Precision@3
361
  - type: cosine_precision@5
362
  value: 0.17501508750754374
@@ -365,10 +365,10 @@ model-index:
365
  value: 0.08974049487024743
366
  name: Cosine Precision@10
367
  - type: cosine_recall@1
368
- value: 0.7109233554616777
369
  name: Cosine Recall@1
370
  - type: cosine_recall@3
371
- value: 0.8503319251659626
372
  name: Cosine Recall@3
373
  - type: cosine_recall@5
374
  value: 0.8750754375377188
@@ -377,13 +377,13 @@ model-index:
377
  value: 0.8974049487024743
378
  name: Cosine Recall@10
379
  - type: cosine_ndcg@10
380
- value: 0.8110786488208866
381
  name: Cosine Ndcg@10
382
  - type: cosine_mrr@10
383
- value: 0.7826713988753816
384
  name: Cosine Mrr@10
385
  - type: cosine_map@100
386
- value: 0.7847527919142971
387
  name: Cosine Map@100
388
  ---
389
 
@@ -583,21 +583,21 @@ You can finetune this model on your own dataset.
583
 
584
  | Metric | Value |
585
  |:--------------------|:-----------|
586
- | cosine_accuracy@1 | 0.7719 |
587
- | cosine_accuracy@3 | 0.8932 |
588
- | cosine_accuracy@5 | 0.9137 |
589
- | cosine_accuracy@10 | 0.9282 |
590
- | cosine_precision@1 | 0.7719 |
591
- | cosine_precision@3 | 0.2977 |
592
- | cosine_precision@5 | 0.1827 |
593
- | cosine_precision@10 | 0.0928 |
594
- | cosine_recall@1 | 0.7719 |
595
- | cosine_recall@3 | 0.8932 |
596
- | cosine_recall@5 | 0.9137 |
597
- | cosine_recall@10 | 0.9282 |
598
- | **cosine_ndcg@10** | **0.8568** |
599
- | cosine_mrr@10 | 0.8331 |
600
- | cosine_map@100 | 0.8344 |
601
 
602
  #### Information Retrieval
603
 
@@ -611,21 +611,21 @@ You can finetune this model on your own dataset.
611
 
612
  | Metric | Value |
613
  |:--------------------|:-----------|
614
- | cosine_accuracy@1 | 0.7707 |
615
- | cosine_accuracy@3 | 0.8926 |
616
- | cosine_accuracy@5 | 0.9119 |
617
- | cosine_accuracy@10 | 0.9288 |
618
- | cosine_precision@1 | 0.7707 |
619
- | cosine_precision@3 | 0.2975 |
620
- | cosine_precision@5 | 0.1824 |
621
- | cosine_precision@10 | 0.0929 |
622
- | cosine_recall@1 | 0.7707 |
623
- | cosine_recall@3 | 0.8926 |
624
- | cosine_recall@5 | 0.9119 |
625
- | cosine_recall@10 | 0.9288 |
626
- | **cosine_ndcg@10** | **0.8564** |
627
- | cosine_mrr@10 | 0.8324 |
628
- | cosine_map@100 | 0.8336 |
629
 
630
  #### Information Retrieval
631
 
@@ -639,21 +639,21 @@ You can finetune this model on your own dataset.
639
 
640
  | Metric | Value |
641
  |:--------------------|:-----------|
642
- | cosine_accuracy@1 | 0.7683 |
643
- | cosine_accuracy@3 | 0.892 |
644
- | cosine_accuracy@5 | 0.9107 |
645
- | cosine_accuracy@10 | 0.93 |
646
- | cosine_precision@1 | 0.7683 |
647
- | cosine_precision@3 | 0.2973 |
648
- | cosine_precision@5 | 0.1821 |
649
- | cosine_precision@10 | 0.093 |
650
- | cosine_recall@1 | 0.7683 |
651
- | cosine_recall@3 | 0.892 |
652
- | cosine_recall@5 | 0.9107 |
653
- | cosine_recall@10 | 0.93 |
654
- | **cosine_ndcg@10** | **0.8554** |
655
- | cosine_mrr@10 | 0.8308 |
656
- | cosine_map@100 | 0.8318 |
657
 
658
  #### Information Retrieval
659
 
@@ -667,21 +667,21 @@ You can finetune this model on your own dataset.
667
 
668
  | Metric | Value |
669
  |:--------------------|:-----------|
670
- | cosine_accuracy@1 | 0.7646 |
671
- | cosine_accuracy@3 | 0.8884 |
672
- | cosine_accuracy@5 | 0.9059 |
673
- | cosine_accuracy@10 | 0.9252 |
674
- | cosine_precision@1 | 0.7646 |
675
- | cosine_precision@3 | 0.2961 |
676
- | cosine_precision@5 | 0.1812 |
677
- | cosine_precision@10 | 0.0925 |
678
- | cosine_recall@1 | 0.7646 |
679
- | cosine_recall@3 | 0.8884 |
680
- | cosine_recall@5 | 0.9059 |
681
- | cosine_recall@10 | 0.9252 |
682
- | **cosine_ndcg@10** | **0.8516** |
683
- | cosine_mrr@10 | 0.8272 |
684
- | cosine_map@100 | 0.8285 |
685
 
686
  #### Information Retrieval
687
 
@@ -695,21 +695,21 @@ You can finetune this model on your own dataset.
695
 
696
  | Metric | Value |
697
  |:--------------------|:-----------|
698
- | cosine_accuracy@1 | 0.7532 |
699
- | cosine_accuracy@3 | 0.8775 |
700
- | cosine_accuracy@5 | 0.8968 |
701
- | cosine_accuracy@10 | 0.9161 |
702
- | cosine_precision@1 | 0.7532 |
703
- | cosine_precision@3 | 0.2925 |
704
- | cosine_precision@5 | 0.1794 |
705
- | cosine_precision@10 | 0.0916 |
706
- | cosine_recall@1 | 0.7532 |
707
- | cosine_recall@3 | 0.8775 |
708
- | cosine_recall@5 | 0.8968 |
709
- | cosine_recall@10 | 0.9161 |
710
- | **cosine_ndcg@10** | **0.8412** |
711
- | cosine_mrr@10 | 0.8165 |
712
- | cosine_map@100 | 0.8182 |
713
 
714
  #### Information Retrieval
715
 
@@ -723,21 +723,21 @@ You can finetune this model on your own dataset.
723
 
724
  | Metric | Value |
725
  |:--------------------|:-----------|
726
- | cosine_accuracy@1 | 0.7109 |
727
- | cosine_accuracy@3 | 0.8503 |
728
  | cosine_accuracy@5 | 0.8751 |
729
  | cosine_accuracy@10 | 0.8974 |
730
- | cosine_precision@1 | 0.7109 |
731
- | cosine_precision@3 | 0.2834 |
732
  | cosine_precision@5 | 0.175 |
733
  | cosine_precision@10 | 0.0897 |
734
- | cosine_recall@1 | 0.7109 |
735
- | cosine_recall@3 | 0.8503 |
736
  | cosine_recall@5 | 0.8751 |
737
  | cosine_recall@10 | 0.8974 |
738
- | **cosine_ndcg@10** | **0.8111** |
739
- | cosine_mrr@10 | 0.7827 |
740
- | cosine_map@100 | 0.7848 |
741
 
742
  <!--
743
  ## Bias, Risks and Limitations
@@ -799,11 +799,11 @@ You can finetune this model on your own dataset.
799
  #### Non-Default Hyperparameters
800
 
801
  - `eval_strategy`: epoch
802
- - `per_device_train_batch_size`: 32
803
  - `per_device_eval_batch_size`: 16
804
- - `gradient_accumulation_steps`: 16
805
  - `learning_rate`: 2e-05
806
- - `num_train_epochs`: 4
807
  - `lr_scheduler_type`: cosine
808
  - `warmup_ratio`: 0.1
809
  - `tf32`: True
@@ -818,11 +818,11 @@ You can finetune this model on your own dataset.
818
  - `do_predict`: False
819
  - `eval_strategy`: epoch
820
  - `prediction_loss_only`: True
821
- - `per_device_train_batch_size`: 32
822
  - `per_device_eval_batch_size`: 16
823
  - `per_gpu_train_batch_size`: None
824
  - `per_gpu_eval_batch_size`: None
825
- - `gradient_accumulation_steps`: 16
826
  - `eval_accumulation_steps`: None
827
  - `torch_empty_cache_steps`: None
828
  - `learning_rate`: 2e-05
@@ -831,7 +831,7 @@ You can finetune this model on your own dataset.
831
  - `adam_beta2`: 0.999
832
  - `adam_epsilon`: 1e-08
833
  - `max_grad_norm`: 1.0
834
- - `num_train_epochs`: 4
835
  - `max_steps`: -1
836
  - `lr_scheduler_type`: cosine
837
  - `lr_scheduler_kwargs`: {}
@@ -932,20 +932,25 @@ You can finetune this model on your own dataset.
932
  </details>
933
 
934
  ### Training Logs
935
- | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
936
- |:------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
937
- | 0.3433 | 10 | 23.532 | - | - | - | - | - | - |
938
- | 0.6867 | 20 | 10.6294 | - | - | - | - | - | - |
939
- | 1.0 | 30 | 5.9964 | 0.8436 | 0.8428 | 0.8417 | 0.8373 | 0.8254 | 0.7920 |
940
- | 1.3433 | 40 | 4.451 | - | - | - | - | - | - |
941
- | 1.6867 | 50 | 4.7053 | - | - | - | - | - | - |
942
- | 2.0 | 60 | 3.9423 | 0.8555 | 0.8539 | 0.8535 | 0.8505 | 0.8374 | 0.8075 |
943
- | 2.3433 | 70 | 4.0009 | - | - | - | - | - | - |
944
- | 2.6867 | 80 | 4.3913 | - | - | - | - | - | - |
945
- | 3.0 | 90 | 2.9362 | 0.8566 | 0.8548 | 0.8554 | 0.8514 | 0.8401 | 0.8089 |
946
- | 3.3433 | 100 | 3.7804 | - | - | - | - | - | - |
947
- | 3.6867 | 110 | 4.5676 | - | - | - | - | - | - |
948
- | 3.8927 | 116 | - | 0.8568 | 0.8564 | 0.8554 | 0.8516 | 0.8412 | 0.8111 |
 
 
 
 
 
949
 
950
 
951
  ### Framework Versions
 
81
  type: dim_1024
82
  metrics:
83
  - type: cosine_accuracy@1
84
+ value: 0.7803258901629451
85
  name: Cosine Accuracy@1
86
  - type: cosine_accuracy@3
87
+ value: 0.8883524441762221
88
  name: Cosine Accuracy@3
89
  - type: cosine_accuracy@5
90
+ value: 0.904043452021726
91
  name: Cosine Accuracy@5
92
  - type: cosine_accuracy@10
93
+ value: 0.9233554616777309
94
  name: Cosine Accuracy@10
95
  - type: cosine_precision@1
96
+ value: 0.7803258901629451
97
  name: Cosine Precision@1
98
  - type: cosine_precision@3
99
+ value: 0.29611748139207406
100
  name: Cosine Precision@3
101
  - type: cosine_precision@5
102
+ value: 0.18080869040434522
103
  name: Cosine Precision@5
104
  - type: cosine_precision@10
105
+ value: 0.09233554616777308
106
  name: Cosine Precision@10
107
  - type: cosine_recall@1
108
+ value: 0.7803258901629451
109
  name: Cosine Recall@1
110
  - type: cosine_recall@3
111
+ value: 0.8883524441762221
112
  name: Cosine Recall@3
113
  - type: cosine_recall@5
114
+ value: 0.904043452021726
115
  name: Cosine Recall@5
116
  - type: cosine_recall@10
117
+ value: 0.9233554616777309
118
  name: Cosine Recall@10
119
  - type: cosine_ndcg@10
120
+ value: 0.8576141434466037
121
  name: Cosine Ndcg@10
122
  - type: cosine_mrr@10
123
+ value: 0.8359425142014155
124
  name: Cosine Mrr@10
125
  - type: cosine_map@100
126
+ value: 0.8374344979701236
127
  name: Cosine Map@100
128
  - task:
129
  type: information-retrieval
 
133
  type: dim_768
134
  metrics:
135
  - type: cosine_accuracy@1
136
+ value: 0.7827398913699457
137
  name: Cosine Accuracy@1
138
  - type: cosine_accuracy@3
139
+ value: 0.8877489438744719
140
  name: Cosine Accuracy@3
141
  - type: cosine_accuracy@5
142
+ value: 0.9034399517199758
143
  name: Cosine Accuracy@5
144
  - type: cosine_accuracy@10
145
+ value: 0.9245624622812312
146
  name: Cosine Accuracy@10
147
  - type: cosine_precision@1
148
+ value: 0.7827398913699457
149
  name: Cosine Precision@1
150
  - type: cosine_precision@3
151
+ value: 0.295916314624824
152
  name: Cosine Precision@3
153
  - type: cosine_precision@5
154
+ value: 0.18068799034399516
155
  name: Cosine Precision@5
156
  - type: cosine_precision@10
157
+ value: 0.09245624622812311
158
  name: Cosine Precision@10
159
  - type: cosine_recall@1
160
+ value: 0.7827398913699457
161
  name: Cosine Recall@1
162
  - type: cosine_recall@3
163
+ value: 0.8877489438744719
164
  name: Cosine Recall@3
165
  - type: cosine_recall@5
166
+ value: 0.9034399517199758
167
  name: Cosine Recall@5
168
  - type: cosine_recall@10
169
+ value: 0.9245624622812312
170
  name: Cosine Recall@10
171
  - type: cosine_ndcg@10
172
+ value: 0.858770916125463
173
  name: Cosine Ndcg@10
174
  - type: cosine_mrr@10
175
+ value: 0.8371705894186279
176
  name: Cosine Mrr@10
177
  - type: cosine_map@100
178
+ value: 0.8385437636605255
179
  name: Cosine Map@100
180
  - task:
181
  type: information-retrieval
 
185
  type: dim_512
186
  metrics:
187
  - type: cosine_accuracy@1
188
+ value: 0.7797223898611949
189
  name: Cosine Accuracy@1
190
  - type: cosine_accuracy@3
191
+ value: 0.8859384429692215
192
  name: Cosine Accuracy@3
193
  - type: cosine_accuracy@5
194
+ value: 0.9010259505129753
195
  name: Cosine Accuracy@5
196
  - type: cosine_accuracy@10
197
+ value: 0.9227519613759807
198
  name: Cosine Accuracy@10
199
  - type: cosine_precision@1
200
+ value: 0.7797223898611949
201
  name: Cosine Precision@1
202
  - type: cosine_precision@3
203
+ value: 0.2953128143230738
204
  name: Cosine Precision@3
205
  - type: cosine_precision@5
206
+ value: 0.18020519010259503
207
  name: Cosine Precision@5
208
  - type: cosine_precision@10
209
+ value: 0.09227519613759806
210
  name: Cosine Precision@10
211
  - type: cosine_recall@1
212
+ value: 0.7797223898611949
213
  name: Cosine Recall@1
214
  - type: cosine_recall@3
215
+ value: 0.8859384429692215
216
  name: Cosine Recall@3
217
  - type: cosine_recall@5
218
+ value: 0.9010259505129753
219
  name: Cosine Recall@5
220
  - type: cosine_recall@10
221
+ value: 0.9227519613759807
222
  name: Cosine Recall@10
223
  - type: cosine_ndcg@10
224
+ value: 0.8564496755344808
225
  name: Cosine Ndcg@10
226
  - type: cosine_mrr@10
227
+ value: 0.8346785163471941
228
  name: Cosine Mrr@10
229
  - type: cosine_map@100
230
+ value: 0.8361853082918266
231
  name: Cosine Map@100
232
  - task:
233
  type: information-retrieval
 
237
  type: dim_256
238
  metrics:
239
  - type: cosine_accuracy@1
240
+ value: 0.7706698853349426
241
  name: Cosine Accuracy@1
242
  - type: cosine_accuracy@3
243
+ value: 0.8823174411587206
244
  name: Cosine Accuracy@3
245
  - type: cosine_accuracy@5
246
+ value: 0.9016294508147255
247
  name: Cosine Accuracy@5
248
  - type: cosine_accuracy@10
249
+ value: 0.9191309595654797
250
  name: Cosine Accuracy@10
251
  - type: cosine_precision@1
252
+ value: 0.7706698853349426
253
  name: Cosine Precision@1
254
  - type: cosine_precision@3
255
+ value: 0.2941058137195735
256
  name: Cosine Precision@3
257
  - type: cosine_precision@5
258
+ value: 0.18032589016294506
259
  name: Cosine Precision@5
260
  - type: cosine_precision@10
261
+ value: 0.09191309595654798
262
  name: Cosine Precision@10
263
  - type: cosine_recall@1
264
+ value: 0.7706698853349426
265
  name: Cosine Recall@1
266
  - type: cosine_recall@3
267
+ value: 0.8823174411587206
268
  name: Cosine Recall@3
269
  - type: cosine_recall@5
270
+ value: 0.9016294508147255
271
  name: Cosine Recall@5
272
  - type: cosine_recall@10
273
+ value: 0.9191309595654797
274
  name: Cosine Recall@10
275
  - type: cosine_ndcg@10
276
+ value: 0.851155539622205
277
  name: Cosine Ndcg@10
278
  - type: cosine_mrr@10
279
+ value: 0.8286940445057519
280
  name: Cosine Mrr@10
281
  - type: cosine_map@100
282
+ value: 0.8302805177061129
283
  name: Cosine Map@100
284
  - task:
285
  type: information-retrieval
 
289
  type: dim_128
290
  metrics:
291
  - type: cosine_accuracy@1
292
+ value: 0.7604103802051901
293
  name: Cosine Accuracy@1
294
  - type: cosine_accuracy@3
295
+ value: 0.8690404345202173
296
  name: Cosine Accuracy@3
297
  - type: cosine_accuracy@5
298
+ value: 0.8901629450814725
299
  name: Cosine Accuracy@5
300
  - type: cosine_accuracy@10
301
+ value: 0.9130959565479783
302
  name: Cosine Accuracy@10
303
  - type: cosine_precision@1
304
+ value: 0.7604103802051901
305
  name: Cosine Precision@1
306
  - type: cosine_precision@3
307
+ value: 0.28968014484007243
308
  name: Cosine Precision@3
309
  - type: cosine_precision@5
310
+ value: 0.1780325890162945
311
  name: Cosine Precision@5
312
  - type: cosine_precision@10
313
+ value: 0.09130959565479783
314
  name: Cosine Precision@10
315
  - type: cosine_recall@1
316
+ value: 0.7604103802051901
317
  name: Cosine Recall@1
318
  - type: cosine_recall@3
319
+ value: 0.8690404345202173
320
  name: Cosine Recall@3
321
  - type: cosine_recall@5
322
+ value: 0.8901629450814725
323
  name: Cosine Recall@5
324
  - type: cosine_recall@10
325
+ value: 0.9130959565479783
326
  name: Cosine Recall@10
327
  - type: cosine_ndcg@10
328
+ value: 0.8415141158022221
329
  name: Cosine Ndcg@10
330
  - type: cosine_mrr@10
331
+ value: 0.8181217729497756
332
  name: Cosine Mrr@10
333
  - type: cosine_map@100
334
+ value: 0.8199539602494803
335
  name: Cosine Map@100
336
  - task:
337
  type: information-retrieval
 
341
  type: dim_64
342
  metrics:
343
  - type: cosine_accuracy@1
344
+ value: 0.7248038624019312
345
  name: Cosine Accuracy@1
346
  - type: cosine_accuracy@3
347
+ value: 0.852142426071213
348
  name: Cosine Accuracy@3
349
  - type: cosine_accuracy@5
350
  value: 0.8750754375377188
 
353
  value: 0.8974049487024743
354
  name: Cosine Accuracy@10
355
  - type: cosine_precision@1
356
+ value: 0.7248038624019312
357
  name: Cosine Precision@1
358
  - type: cosine_precision@3
359
+ value: 0.28404747535707103
360
  name: Cosine Precision@3
361
  - type: cosine_precision@5
362
  value: 0.17501508750754374
 
365
  value: 0.08974049487024743
366
  name: Cosine Precision@10
367
  - type: cosine_recall@1
368
+ value: 0.7248038624019312
369
  name: Cosine Recall@1
370
  - type: cosine_recall@3
371
+ value: 0.852142426071213
372
  name: Cosine Recall@3
373
  - type: cosine_recall@5
374
  value: 0.8750754375377188
 
377
  value: 0.8974049487024743
378
  name: Cosine Recall@10
379
  - type: cosine_ndcg@10
380
+ value: 0.8181789750224895
381
  name: Cosine Ndcg@10
382
  - type: cosine_mrr@10
383
+ value: 0.7920167926353802
384
  name: Cosine Mrr@10
385
  - type: cosine_map@100
386
+ value: 0.793825252598125
387
  name: Cosine Map@100
388
  ---
389
 
 
583
 
584
  | Metric | Value |
585
  |:--------------------|:-----------|
586
+ | cosine_accuracy@1 | 0.7803 |
587
+ | cosine_accuracy@3 | 0.8884 |
588
+ | cosine_accuracy@5 | 0.904 |
589
+ | cosine_accuracy@10 | 0.9234 |
590
+ | cosine_precision@1 | 0.7803 |
591
+ | cosine_precision@3 | 0.2961 |
592
+ | cosine_precision@5 | 0.1808 |
593
+ | cosine_precision@10 | 0.0923 |
594
+ | cosine_recall@1 | 0.7803 |
595
+ | cosine_recall@3 | 0.8884 |
596
+ | cosine_recall@5 | 0.904 |
597
+ | cosine_recall@10 | 0.9234 |
598
+ | **cosine_ndcg@10** | **0.8576** |
599
+ | cosine_mrr@10 | 0.8359 |
600
+ | cosine_map@100 | 0.8374 |
601
 
602
  #### Information Retrieval
603
 
 
611
 
612
  | Metric | Value |
613
  |:--------------------|:-----------|
614
+ | cosine_accuracy@1 | 0.7827 |
615
+ | cosine_accuracy@3 | 0.8877 |
616
+ | cosine_accuracy@5 | 0.9034 |
617
+ | cosine_accuracy@10 | 0.9246 |
618
+ | cosine_precision@1 | 0.7827 |
619
+ | cosine_precision@3 | 0.2959 |
620
+ | cosine_precision@5 | 0.1807 |
621
+ | cosine_precision@10 | 0.0925 |
622
+ | cosine_recall@1 | 0.7827 |
623
+ | cosine_recall@3 | 0.8877 |
624
+ | cosine_recall@5 | 0.9034 |
625
+ | cosine_recall@10 | 0.9246 |
626
+ | **cosine_ndcg@10** | **0.8588** |
627
+ | cosine_mrr@10 | 0.8372 |
628
+ | cosine_map@100 | 0.8385 |
629
 
630
  #### Information Retrieval
631
 
 
639
 
640
  | Metric | Value |
641
  |:--------------------|:-----------|
642
+ | cosine_accuracy@1 | 0.7797 |
643
+ | cosine_accuracy@3 | 0.8859 |
644
+ | cosine_accuracy@5 | 0.901 |
645
+ | cosine_accuracy@10 | 0.9228 |
646
+ | cosine_precision@1 | 0.7797 |
647
+ | cosine_precision@3 | 0.2953 |
648
+ | cosine_precision@5 | 0.1802 |
649
+ | cosine_precision@10 | 0.0923 |
650
+ | cosine_recall@1 | 0.7797 |
651
+ | cosine_recall@3 | 0.8859 |
652
+ | cosine_recall@5 | 0.901 |
653
+ | cosine_recall@10 | 0.9228 |
654
+ | **cosine_ndcg@10** | **0.8564** |
655
+ | cosine_mrr@10 | 0.8347 |
656
+ | cosine_map@100 | 0.8362 |
657
 
658
  #### Information Retrieval
659
 
 
667
 
668
  | Metric | Value |
669
  |:--------------------|:-----------|
670
+ | cosine_accuracy@1 | 0.7707 |
671
+ | cosine_accuracy@3 | 0.8823 |
672
+ | cosine_accuracy@5 | 0.9016 |
673
+ | cosine_accuracy@10 | 0.9191 |
674
+ | cosine_precision@1 | 0.7707 |
675
+ | cosine_precision@3 | 0.2941 |
676
+ | cosine_precision@5 | 0.1803 |
677
+ | cosine_precision@10 | 0.0919 |
678
+ | cosine_recall@1 | 0.7707 |
679
+ | cosine_recall@3 | 0.8823 |
680
+ | cosine_recall@5 | 0.9016 |
681
+ | cosine_recall@10 | 0.9191 |
682
+ | **cosine_ndcg@10** | **0.8512** |
683
+ | cosine_mrr@10 | 0.8287 |
684
+ | cosine_map@100 | 0.8303 |
685
 
686
  #### Information Retrieval
687
 
 
695
 
696
  | Metric | Value |
697
  |:--------------------|:-----------|
698
+ | cosine_accuracy@1 | 0.7604 |
699
+ | cosine_accuracy@3 | 0.869 |
700
+ | cosine_accuracy@5 | 0.8902 |
701
+ | cosine_accuracy@10 | 0.9131 |
702
+ | cosine_precision@1 | 0.7604 |
703
+ | cosine_precision@3 | 0.2897 |
704
+ | cosine_precision@5 | 0.178 |
705
+ | cosine_precision@10 | 0.0913 |
706
+ | cosine_recall@1 | 0.7604 |
707
+ | cosine_recall@3 | 0.869 |
708
+ | cosine_recall@5 | 0.8902 |
709
+ | cosine_recall@10 | 0.9131 |
710
+ | **cosine_ndcg@10** | **0.8415** |
711
+ | cosine_mrr@10 | 0.8181 |
712
+ | cosine_map@100 | 0.82 |
713
 
714
  #### Information Retrieval
715
 
 
723
 
724
  | Metric | Value |
725
  |:--------------------|:-----------|
726
+ | cosine_accuracy@1 | 0.7248 |
727
+ | cosine_accuracy@3 | 0.8521 |
728
  | cosine_accuracy@5 | 0.8751 |
729
  | cosine_accuracy@10 | 0.8974 |
730
+ | cosine_precision@1 | 0.7248 |
731
+ | cosine_precision@3 | 0.284 |
732
  | cosine_precision@5 | 0.175 |
733
  | cosine_precision@10 | 0.0897 |
734
+ | cosine_recall@1 | 0.7248 |
735
+ | cosine_recall@3 | 0.8521 |
736
  | cosine_recall@5 | 0.8751 |
737
  | cosine_recall@10 | 0.8974 |
738
+ | **cosine_ndcg@10** | **0.8182** |
739
+ | cosine_mrr@10 | 0.792 |
740
+ | cosine_map@100 | 0.7938 |
741
 
742
  <!--
743
  ## Bias, Risks and Limitations
 
799
  #### Non-Default Hyperparameters
800
 
801
  - `eval_strategy`: epoch
802
+ - `per_device_train_batch_size`: 64
803
  - `per_device_eval_batch_size`: 16
804
+ - `gradient_accumulation_steps`: 32
805
  - `learning_rate`: 2e-05
806
+ - `num_train_epochs`: 12
807
  - `lr_scheduler_type`: cosine
808
  - `warmup_ratio`: 0.1
809
  - `tf32`: True
 
818
  - `do_predict`: False
819
  - `eval_strategy`: epoch
820
  - `prediction_loss_only`: True
821
+ - `per_device_train_batch_size`: 64
822
  - `per_device_eval_batch_size`: 16
823
  - `per_gpu_train_batch_size`: None
824
  - `per_gpu_eval_batch_size`: None
825
+ - `gradient_accumulation_steps`: 32
826
  - `eval_accumulation_steps`: None
827
  - `torch_empty_cache_steps`: None
828
  - `learning_rate`: 2e-05
 
831
  - `adam_beta2`: 0.999
832
  - `adam_epsilon`: 1e-08
833
  - `max_grad_norm`: 1.0
834
+ - `num_train_epochs`: 12
835
  - `max_steps`: -1
836
  - `lr_scheduler_type`: cosine
837
  - `lr_scheduler_kwargs`: {}
 
932
  </details>
933
 
934
  ### Training Logs
935
+ | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
936
+ |:-------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
937
+ | 1.0 | 8 | - | 0.7663 | 0.7676 | 0.7656 | 0.7626 | 0.7393 | 0.6969 |
938
+ | 1.2747 | 10 | 127.0406 | - | - | - | - | - | - |
939
+ | 2.0 | 16 | - | 0.8244 | 0.8240 | 0.8226 | 0.8172 | 0.8060 | 0.7775 |
940
+ | 2.5494 | 20 | 38.8995 | - | - | - | - | - | - |
941
+ | 3.0 | 24 | - | 0.8425 | 0.8426 | 0.8444 | 0.8373 | 0.8252 | 0.7996 |
942
+ | 3.8240 | 30 | 20.1528 | - | - | - | - | - | - |
943
+ | 4.0 | 32 | - | 0.8526 | 0.8520 | 0.8498 | 0.8456 | 0.8289 | 0.8037 |
944
+ | 5.0 | 40 | 14.0513 | 0.8550 | 0.8543 | 0.8517 | 0.8490 | 0.8368 | 0.8139 |
945
+ | 6.0 | 48 | - | 0.8572 | 0.8565 | 0.8557 | 0.8520 | 0.8404 | 0.8170 |
946
+ | 6.2747 | 50 | 13.364 | - | - | - | - | - | - |
947
+ | 7.0 | 56 | - | 0.8579 | 0.8576 | 0.8553 | 0.8514 | 0.8422 | 0.8180 |
948
+ | 7.5494 | 60 | 12.7986 | - | - | - | - | - | - |
949
+ | 8.0 | 64 | - | 0.8573 | 0.8580 | 0.8560 | 0.8523 | 0.8414 | 0.8178 |
950
+ | 8.8240 | 70 | 12.0091 | - | - | - | - | - | - |
951
+ | 9.0 | 72 | - | 0.8578 | 0.8586 | 0.8562 | 0.8519 | 0.8423 | 0.8184 |
952
+ | 10.0 | 80 | 10.9468 | 0.8583 | 0.8589 | 0.8565 | 0.8530 | 0.8413 | 0.8191 |
953
+ | 10.5494 | 84 | - | 0.8576 | 0.8588 | 0.8564 | 0.8512 | 0.8415 | 0.8182 |
954
 
955
 
956
  ### Framework Versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:77438c542b0993994f69a4e6c0cf7341c8024b647f3fe764660ad9e6696aaad9
3
  size 1144685320
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cd81a650c2cc7b04eb39dc3d7523ba382d3823d3718c2f3afce2192fd4b074b
3
  size 1144685320