Enhance model card: Add GitHub link and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,20 +1,20 @@
|
|
| 1 |
---
|
| 2 |
-
pipeline_tag: text-generation
|
| 3 |
library_name: transformers
|
| 4 |
license: cc-by-nc-4.0
|
|
|
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
| 11 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 12 |
|
| 13 |
### Important Links
|
| 14 |
|
| 15 |
📖[Arxiv Paper](https://arxiv.org/abs/2507.22478) |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
## News
|
| 20 |
|
|
@@ -49,7 +49,7 @@ tags:
|
|
| 49 |
|
| 50 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_main.png" height="500" alt="slmsql_bird_main">
|
| 51 |
|
| 52 |
-
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_spider_main.png" height="500" alt="
|
| 53 |
|
| 54 |
Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
|
| 55 |
|
|
@@ -65,7 +65,7 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
| 65 |
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
|
| 66 |
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
|
| 67 |
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
|
| 68 |
-
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B)
|
| 69 |
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
|
| 70 |
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
|
| 71 |
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
|
|
@@ -79,6 +79,44 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
| 79 |
| SynsQL-Merge-Think-310k | [🤖 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [🤗 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
|
| 80 |
| bird train and dev dataset | [🤖 Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [🤗 HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
## TODO
|
| 83 |
|
| 84 |
- [ ] Release inference code
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: cc-by-nc-4.0
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
|
|
|
| 10 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 11 |
|
| 12 |
### Important Links
|
| 13 |
|
| 14 |
📖[Arxiv Paper](https://arxiv.org/abs/2507.22478) |
|
| 15 |
+
\ud83d\udcbb[GitHub Repository](https://github.com/CycloneBoy/slm_sql) |
|
| 16 |
+
🤗[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
| 17 |
+
🤖[ModelScope Collection](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 18 |
|
| 19 |
## News
|
| 20 |
|
|
|
|
| 49 |
|
| 50 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_main.png" height="500" alt="slmsql_bird_main">
|
| 51 |
|
| 52 |
+
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_spider_main.png" height="500" alt="slm_sql_spider_main">
|
| 53 |
|
| 54 |
Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
|
| 55 |
|
|
|
|
| 65 |
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
|
| 66 |
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
|
| 67 |
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
|
| 68 |
+
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B) |\
|
| 69 |
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
|
| 70 |
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
|
| 71 |
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [🤖 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [🤗 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
|
|
|
|
| 79 |
| SynsQL-Merge-Think-310k | [🤖 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [🤗 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
|
| 80 |
| bird train and dev dataset | [🤖 Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [🤗 HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
|
| 81 |
|
| 82 |
+
## Usage
|
| 83 |
+
|
| 84 |
+
You can easily load the model and use it for text-to-SQL generation with the Hugging Face `transformers` library. Here is an example:
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 88 |
+
import torch
|
| 89 |
+
|
| 90 |
+
model_name = "cycloneboy/SLM-SQL-0.5B"
|
| 91 |
+
# Or choose another model from the table above, e.g., "cycloneboy/SLM-SQL-1.5B"
|
| 92 |
+
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 94 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
| 95 |
+
|
| 96 |
+
# Example prompt for text-to-SQL
|
| 97 |
+
# Replace 'Your_Database_Schema_Here' with your actual database schema/DDL if needed
|
| 98 |
+
# The model might expect a specific prompt format based on its training,
|
| 99 |
+
# refer to the original GitHub repository for detailed prompting instructions.
|
| 100 |
+
prompt = "Please give me the names of all employees who work in the 'Sales' department."
|
| 101 |
+
|
| 102 |
+
# Apply chat template if available, or just format the prompt directly
|
| 103 |
+
if hasattr(tokenizer, 'apply_chat_template') and tokenizer.chat_template is not None:
|
| 104 |
+
messages = [{"role": "user", "content": prompt}]
|
| 105 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 106 |
+
else:
|
| 107 |
+
input_text = prompt
|
| 108 |
+
|
| 109 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 110 |
+
|
| 111 |
+
# Generate SQL query
|
| 112 |
+
outputs = model.generate(**inputs, max_new_tokens=128, temperature=0.7, do_sample=True, top_p=0.95)
|
| 113 |
+
|
| 114 |
+
# Decode and print the generated SQL
|
| 115 |
+
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 116 |
+
print(f"Generated SQL:
|
| 117 |
+
{generated_sql}")
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
## TODO
|
| 121 |
|
| 122 |
- [ ] Release inference code
|