Adit-jain commited on
Commit
9e76891
·
verified ·
1 Parent(s): d5dcb4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -26
README.md CHANGED
@@ -20,13 +20,22 @@ size_categories:
20
 
21
  # ⚽ Soccer Object Detection Dataset (25K Subset from 1M+ Images)
22
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  This dataset is a curated subset (25,000 images) from a larger soccer vision dataset containing over **1 million images** (50+ GB). The data was collected and augmented from multiple **open-source sources**, including the **SoccerNet dataset**, video game renders, and publicly available match footage.
24
 
25
  It is optimized for **object detection tasks**, especially focusing on soccer-related entities such as **players**, **referees**, and the **ball**, including various augmentation types like background-only and noisy scenes.
26
 
27
- ---
28
-
29
- ## 📁 Dataset Structure
30
 
31
  - ✅ 25,000 images (~1.5GB)
32
  - ✅ Annotations for 3 object classes:
@@ -37,12 +46,25 @@ It is optimized for **object detection tasks**, especially focusing on soccer-re
37
  - **Ultralytics YOLO format** (default)
38
  - **COCO JSON format** (included in separate folders)
39
  - ✅ Resolution variety:
40
- - `160x160`, `320x320`, `640x640`, and `1280x1080` (Full HD)
41
- - ✅ Includes:
42
- - **Sliced images** via [SAHI (Slicing Aided Hyper Inference)](https://github.com/obss/sahi)
43
- - **Background-only images**
44
- - **Multi-angle player views**
45
- - **Noisy and occluded samples** for robustness
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ---
48
 
@@ -64,30 +86,108 @@ V1/
64
 
65
  ---
66
 
67
- ## 🧠 Dataset Origin & Processing
68
 
69
- - Collected from:
70
- - [SoccerNet](https://www.soccer-net.org/)
71
- - Public match footage
72
- - Game engine data (e.g., FIFA-style renders)
73
- - Augmented with:
74
- - [SAHI](https://github.com/obss/sahi) for image slicing
75
- - Inclusion of background-only and noisy images to reduce false positives and improve generalization
76
- - Crops and resizes for multi-resolution model training
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ---
79
 
80
- ## 📦 How to Use
81
- Can find detailed guide at [github](https://github.com/Adit-jain/Soccer_Analysis)
82
- ## Classes
83
- | Class ID | Label |
84
- | -------- | ------- |
85
- | 0 | Player |
86
- | 1 | Referee |
87
- | 2 | Ball |
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  ---
90
 
 
91
  ## Samples
92
  <p align="center">
93
  <img src="samples/Figure_1.png" width="800"/>
 
20
 
21
  # ⚽ Soccer Object Detection Dataset (25K Subset from 1M+ Images)
22
 
23
+ ---
24
+
25
+ ## Index
26
+
27
+ 1. [Dataset Overview](#dataset-overview)
28
+ 2. [Folder Structure](#folder-structure)
29
+ 3. [Dataset Preparation](#dataset-preparation)
30
+ 4. [Data Utils](#data-utils)
31
+ 5. [Samples](#samples)
32
+
33
+ ## Dataset Overview
34
+
35
  This dataset is a curated subset (25,000 images) from a larger soccer vision dataset containing over **1 million images** (50+ GB). The data was collected and augmented from multiple **open-source sources**, including the **SoccerNet dataset**, video game renders, and publicly available match footage.
36
 
37
  It is optimized for **object detection tasks**, especially focusing on soccer-related entities such as **players**, **referees**, and the **ball**, including various augmentation types like background-only and noisy scenes.
38
 
 
 
 
39
 
40
  - ✅ 25,000 images (~1.5GB)
41
  - ✅ Annotations for 3 object classes:
 
46
  - **Ultralytics YOLO format** (default)
47
  - **COCO JSON format** (included in separate folders)
48
  - ✅ Resolution variety:
49
+ - `160x160`
50
+ - `320x320`
51
+ - `640x640`
52
+ - `1280x1080` (Full HD)
53
+ - The dataset includes frames for various scenarios, such as:
54
+ - Occlusions
55
+ - Close up shots
56
+ - Behind the goalpost scenes
57
+ - Camera overlay scenes
58
+ - Low and High angle shots
59
+ - Low resolution shots
60
+ - ### Classes
61
+ | Class ID | Label |
62
+ | -------- | ------- |
63
+ | 0 | Player |
64
+ | 1 | Referee |
65
+ | 2 | Ball |
66
+
67
+ In all, the dataset provides a apt starting point for an all rounder football object detection model.
68
 
69
  ---
70
 
 
86
 
87
  ---
88
 
89
+ ## Dataset Preparation
90
 
91
+ ### Processing Pipeline Architecture
92
+
93
+ ```
94
+ Raw COCO Datasets
95
+
96
+ SAHI Slicing (160/320/640/1280)
97
+
98
+ Image Limit and Filtering
99
+
100
+ Class Name Standardization
101
+
102
+ COCO to YOLO Conversion
103
+
104
+ Final Training Dataset
105
+ ```
106
+
107
+ ### Raw COCO Datasets:
108
+ The following datasets were used for the raw images
109
+ 1. **[Soccer Player Tracker](https://universe.roboflow.com/sac-wjhag/soccer-player-tracker)** (`spt_v2`)
110
+ 2. **[Football Detection Test](https://universe.roboflow.com/projet-m2/test-fooball-detection-bis)** (`tbd_v2`)
111
+ 3. **[VA Project](https://universe.roboflow.com/vaa/va_project-mp2xn)** (`v2_temp`)
112
+ 4. **[Player Detection GKLRL](https://universe.roboflow.com/wisd-ckexz/player-detection-gklrl)** (`v12`)
113
+ 5. **[Football EITPT](https://universe.roboflow.com/va-sah7v/football-eitpt)** (`v5_temp`)
114
+ 6. **[Detect Players DGXZ0](https://universe.roboflow.com/nikhil-chapre-xgndf/detect-players-dgxz0)** (`v3`)
115
+ 7. **[Football Player Detection KUCAB](https://universe.roboflow.com/augmented-startups/football-player-detection-kucab)** (`v7`)
116
+ 8. **[Football Players Detection 3ZVBC](https://universe.roboflow.com/roboflow-jvuqo/football-players-detection-3zvbc)**
117
+
118
+
119
+ ### SAHI slicing
120
+ SAHI (Slicing Aided Hyper Inference) is implemented to handle the multi-scale nature of soccer scenes:
121
+
122
+ **Why SAHI for Soccer?**
123
+ - **Crowded Scenes**: Penalty area situations with multiple overlapping players
124
+ - **Scale Variation**: Players appear at different sizes based on camera distance
125
+ - **Small Object Detection**: Ball detection in wide-angle shots
126
+ - **Context Preservation**: Maintains spatial relationships through overlapping
127
+
128
+ ```python
129
+ slice_sizes = [160, 320, 640, 1280] # Multiple scale processing
130
+ overlap_ratio = 0.2 # 20% overlap between patches
131
+ ```
132
+
133
+ - **160x160 patches**: Optimized for small player detection and crowded scenes
134
+ - **320x320 patches**: Balanced approach for medium-distance shots
135
+ - **640x640 patches**: Preserves context for tactical analysis and large-scale scenes
136
+ - **640x640 patches**: For best results in HD context
137
+
138
+
139
+ ### Image Limit and Filtering
140
+ Due to SAHI, the resulting dataset had 1M+ images, and more than 30GB of data. Image filtering was applied from each dataset
141
+ ```python
142
+ # Per-dataset image limits for balanced training
143
+ image_limits = {
144
+ "spt_v2": 30, "spt_v2_sahi_160": 30, "spt_v2_sahi_320": 40,
145
+ "tbd_v2": -1, "v2_temp": 300, "v2_temp_sahi_160": 300,
146
+ "v2_temp_sahi_320": 400, "v3": 500, "v3_sahi_160": 500,
147
+ "v3_sahi_320": 1000, "v3_sahi_640": 500, "v5_temp": 500,
148
+ "v7": 500, "v7_sahi_160": 500, "v7_sahi_320": 1000,
149
+ "v7_sahi_640": 500, "v12": 200, "v12_sahi_160": 300,
150
+ "v12_sahi_320": 500, "v12_sahi_640": 300,
151
+ }
152
+ ```
153
+
154
+
155
+ ### Class name standardization
156
+ Every dataset had different classes, hence three common classes were taken out from each sub dataset
157
+ - **Player Variants**: Maps 'Player', 'Team-A', 'Team-H', 'football player', 'goalkeeper', 'Gardien', 'Joueur' → Class 0
158
+ - **Ball Variants**: Maps 'ball', 'Ball', 'Ballon', 'football' → Class 1
159
+ - **Referee Variants**: Maps 'referee', 'Referee', 'Arbitre' → Class 2
160
+
161
+
162
+ ### COCO to YOLO
163
+ the final COCO format dataset was converted to YOLO format fro ultralytics pipeline. Both the formats can be found in the zip file.
164
 
165
  ---
166
 
167
+ ## Data Utils
168
+
169
+ ### **Processing Scripts Location**
170
+
171
+ All dataset processing utilities are available in the **Data_utils** directory:
172
+
173
+ **🔗 Repository Link**: [https://github.com/Adit-jain/Soccer_Analysis/tree/main/Data_utils](https://github.com/Adit-jain/Soccer_Analysis/tree/main/Data_utils)
174
+
175
+ ### **Key Utilities**
176
+
177
+ #### **External_Detections/**
178
+ - **`slice_images.py`**: SAHI-based multi-scale slicing
179
+ - **`merge_datasets.py`**: Multi-dataset integration with class mapping
180
+ - **`coco_to_yolo.py`**: Format conversion with coordinate normalization
181
+ - **`create_data_yaml.py`**: YOLO training configuration generation
182
+ - **`visualize_coco_dataset.py`**: Quality control and visualization
183
+
184
+ #### **SoccerNet_Detections/**
185
+ - **`get_soccernet_data.py`**: SoccerNet dataset downloading
186
+ - **`data_preprocessing.py`**: MOT to YOLO conversion pipeline
187
 
188
  ---
189
 
190
+
191
  ## Samples
192
  <p align="center">
193
  <img src="samples/Figure_1.png" width="800"/>