metadata
dataset_name: strava_master_dataset
pretty_name: Strava Master Dataset
license: cc-by-nc-4.0
task_categories:
- time-series-forecasting
tags:
- running
- cycling
- wearable
language:
- en
Strava Master Dataset ― Benj-samurai
Personal multi-sport training log exported from Strava (JP CSV) and processed into a clean, analysis-ready Parquet table + weekly summaries.
Covers 〔開始日 – 終了日〕, total 〔活動件数〕 activities across 〔種目数〕 sports.
Files
File | Rows | Description |
---|---|---|
my_strava_dataset/strava_master_enhanced.parquet |
〔n〕 | Master table — 1 row = 1 activity |
my_strava_dataset/weekly_sport.parquet |
〔m〕 | Weekly totals by year–week × sport |
my_strava_dataset/weekly_category.parquet |
〔k〕 | Weekly totals by intensity zone |
(Parquet → compact, schema-aware, loadable via datasets.load_dataset
)
Column definitions (master)
Column | dtype |
Description |
---|---|---|
activity_id |
int64 |
Strava Activity ID |
name |
string |
Activity title as saved on Strava |
sport |
category |
Sport type (Run , Ride , Swim , Walk , …) |
date |
datetime64[ns] |
Local activity start time |
distance_km |
float32 |
Distance in kilometres (raw m → km) |
elapsed_hr |
float32 |
Elapsed time incl. pauses hours (raw sec → h) |
moving_hr |
float32 |
Moving time (in-motion) hours |
elevation_gain_m |
float32 |
Total positive elevation gain (m) |
elevation_loss_m |
float32 |
Total negative elevation (m) |
average_speed_kph |
float32 |
Moving speed (km h⁻¹) |
max_speed_kph |
float32 |
Max speed (km h⁻¹) |
average_hr |
float32 |
Avg heart-rate (bpm) – NaN if no sensor |
max_hr |
int16 |
Max heart-rate (bpm) |
average_cadence |
float32 |
Avg cadence (rpm) |
max_cadence |
int16 |
Max cadence (rpm) |
average_power |
float32 |
Avg power (W); bike only |
max_power |
int16 |
Peak power (W) |
calories_kcal |
float32 |
Calories reported by Strava |
training_category |
category |
HR zone label Z1-2 / Z3 / Z4 / Z5 / NoHR |
intensity_level |
float32 |
Avg HR ÷ LTHR (165 bpm) |
trimp |
float32 |
Banister TRIMP (moving_hr × intensity_level × 50 ) |
commute |
boolean |
Marked as commute on Strava |
filename |
string |
Original FIT/GPX filename (meta only) |
gear |
string |
Bike / shoes used (if set) |
weather |
string |
Weather summary (if available) |
temperature_c |
float32 |
Avg temp (°C) |
flagged |
boolean |
Strava flagged activity |
year |
int16 |
Calendar year (date ). fast grouping |
month |
int16 |
Calendar month (1–12) |
week |
int16 |
ISO week number (1–53) |
year_month |
string |
"YYYY-MM" label for plotting |
week_start |
datetime64[ns] |
Monday of ISO week (analysis helper) |
sport_weekly_id |
string |
Composite key year_week-sport |
distance_ratio |
float32 |
Share of weekly distance (per sport) |
pace_min_per_km |
float32 |
Pace (min km⁻¹); NaN for non-run |
grade_adjusted_pace |
float32 |
GAP (min km⁻¹); run only |
dirt_distance_km |
float32 |
Unpaved distance (km) |
total_cycles |
int32 |
Swim strokes / pedal revs where available |
route_hash |
string |
MD5 of polyline (GPS privacy) |
gpx_path |
string | None |
Optional GeoJSON path file |
All numeric distance/time columns are converted to km / hours and stored in low-memory float32/int16 where possible.
Empty sensor data are kept asNaN
so they don’t skew means.
Processing pipeline
- Export: Strava JP CSV (
activities.csv
) - Header translation JP→EN (
translate_headers.py
) - Unit conversion (m→km, s→h) & dtype down-cast (
clean_master.ipynb
) - Intensity & TRIMP: LTHR = 165 bpm, Banister formula
- Weekly aggregations (
weekly_summary.ipynb
) - Saved as Parquet, tracked via Git LFS (compact & diff-friendly)
Code & notebooks live in the companion GitHub repo:
https://github.com/Benj-samurai/Strava-Dataset-PRJ
Usage ✨
from datasets import load_dataset
ds = load_dataset(
"Benj-samurai/strava_dataset",
data_files="my_strava_dataset/strava_master_enhanced.parquet",
streaming=False, # True = stream without download
)
df = ds["train"].to_pandas()
# quick EDA
weekly_km = (
df.assign(year_week=df["date"].dt.to_period("W"))
.groupby(["year_week", "sport"])["distance_km"].sum()
)
print(weekly_km.tail())
Privacy & Personal-use License
- Raw FIT/GPX files are not included.
- Activity start coordinates are jittered ≥ 200 m to obscure the true home location.
- Released under CC BY-NC 4.0 – non-commercial use, attribution required.
If you wish to use the data commercially, please contact the author first.
Citation
@misc{asai2025strava,
author = {Asai, Benj-samurai},
title = {Strava Master Dataset},
year = {2025},
howpublished = {\url{https://huggingface.co/datasets/Benj-samurai/strava_dataset}},
note = {Version {{\today}}}
}
Changelog
Date | Version | Notes |
---|---|---|
2025-05-06 | v1.0 | Initial public release |
使い方
- HF Hub ページの Dataset card タブ → Edit を開く
- 上の Markdown を貼り付ける
- 〔 〕部分を実際の値に置換して Commit
行数 は手元でlen(df)
、週レコードはlen(weekly_sport)
などで確認できます。
これで “列定義・処理手順・使用例・ライセンス” を網羅したリッチな Dataset Card になります。
追記やレイアウト調整はお好みでどうぞ!