strava_dataset / README.md
Benj-samurai's picture
Update README.md
e065c18 verified
|
raw
history blame
6.02 kB
metadata
dataset_name: strava_master_dataset
pretty_name: Strava Master Dataset
license: cc-by-nc-4.0
task_categories:
  - time-series-forecasting
tags:
  - running
  - cycling
  - wearable
language:
  - en

Strava Master Dataset ― Benj-samurai

Personal multi-sport training log exported from Strava (JP CSV) and processed into a clean, analysis-ready Parquet table + weekly summaries.
Covers 〔開始日 – 終了日〕, total 〔活動件数〕 activities across 〔種目数〕 sports.


Files

File Rows Description
my_strava_dataset/strava_master_enhanced.parquet 〔n〕 Master table — 1 row = 1 activity
my_strava_dataset/weekly_sport.parquet 〔m〕 Weekly totals by year–week × sport
my_strava_dataset/weekly_category.parquet 〔k〕 Weekly totals by intensity zone

(Parquet → compact, schema-aware, loadable via datasets.load_dataset)


Column definitions (master)

Column dtype Description
activity_id int64 Strava Activity ID
name string Activity title as saved on Strava
sport category Sport type (Run, Ride, Swim, Walk, …)
date datetime64[ns] Local activity start time
distance_km float32 Distance in kilometres (raw m → km)
elapsed_hr float32 Elapsed time incl. pauses hours (raw sec → h)
moving_hr float32 Moving time (in-motion) hours
elevation_gain_m float32 Total positive elevation gain (m)
elevation_loss_m float32 Total negative elevation (m)
average_speed_kph float32 Moving speed (km h⁻¹)
max_speed_kph float32 Max speed (km h⁻¹)
average_hr float32 Avg heart-rate (bpm) – NaN if no sensor
max_hr int16 Max heart-rate (bpm)
average_cadence float32 Avg cadence (rpm)
max_cadence int16 Max cadence (rpm)
average_power float32 Avg power (W); bike only
max_power int16 Peak power (W)
calories_kcal float32 Calories reported by Strava
training_category category HR zone label Z1-2 / Z3 / Z4 / Z5 / NoHR
intensity_level float32 Avg HR ÷ LTHR (165 bpm)
trimp float32 Banister TRIMP (moving_hr × intensity_level × 50)
commute boolean Marked as commute on Strava
filename string Original FIT/GPX filename (meta only)
gear string Bike / shoes used (if set)
weather string Weather summary (if available)
temperature_c float32 Avg temp (°C)
flagged boolean Strava flagged activity
year int16 Calendar year (date). fast grouping
month int16 Calendar month (1–12)
week int16 ISO week number (1–53)
year_month string "YYYY-MM" label for plotting
week_start datetime64[ns] Monday of ISO week (analysis helper)
sport_weekly_id string Composite key year_week-sport
distance_ratio float32 Share of weekly distance (per sport)
pace_min_per_km float32 Pace (min km⁻¹); NaN for non-run
grade_adjusted_pace float32 GAP (min km⁻¹); run only
dirt_distance_km float32 Unpaved distance (km)
total_cycles int32 Swim strokes / pedal revs where available
route_hash string MD5 of polyline (GPS privacy)
gpx_path string | None Optional GeoJSON path file

All numeric distance/time columns are converted to km / hours and stored in low-memory float32/int16 where possible.
Empty sensor data are kept as NaN so they don’t skew means.


Processing pipeline

  1. Export: Strava JP CSV (activities.csv)
  2. Header translation JP→EN (translate_headers.py)
  3. Unit conversion (m→km, s→h) & dtype down-cast (clean_master.ipynb)
  4. Intensity & TRIMP: LTHR = 165 bpm, Banister formula
  5. Weekly aggregations (weekly_summary.ipynb)
  6. Saved as Parquet, tracked via Git LFS (compact & diff-friendly)

Code & notebooks live in the companion GitHub repo:
https://github.com/Benj-samurai/Strava-Dataset-PRJ


Usage ✨

from datasets import load_dataset

ds = load_dataset(
    "Benj-samurai/strava_dataset",
    data_files="my_strava_dataset/strava_master_enhanced.parquet",
    streaming=False,    # True = stream without download
)
df = ds["train"].to_pandas()

# quick EDA
weekly_km = (
    df.assign(year_week=df["date"].dt.to_period("W"))
      .groupby(["year_week", "sport"])["distance_km"].sum()
)
print(weekly_km.tail())

Privacy & Personal-use License

  • Raw FIT/GPX files are not included.
  • Activity start coordinates are jittered ≥ 200 m to obscure the true home location.
  • Released under CC BY-NC 4.0 – non-commercial use, attribution required.
    If you wish to use the data commercially, please contact the author first.

Citation

@misc{asai2025strava,
  author       = {Asai, Benj-samurai},
  title        = {Strava Master Dataset},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/datasets/Benj-samurai/strava_dataset}},
  note         = {Version {{\today}}}
}

Changelog

Date Version Notes
2025-05-06 v1.0 Initial public release

使い方

  1. HF Hub ページの Dataset card タブ → Edit を開く
  2. 上の Markdown を貼り付ける
  3. 〔 〕部分を実際の値に置換して Commit
    行数 は手元で len(df)、週レコードは len(weekly_sport) などで確認できます。

これで “列定義・処理手順・使用例・ライセンス” を網羅したリッチな Dataset Card になります。
追記やレイアウト調整はお好みでどうぞ!