idx
int64
0
7.85k
idx_lca
int64
0
223
offset
int64
162
55k
repo
stringclasses
62 values
commit_hash
stringclasses
113 values
target_file
stringclasses
134 values
line_type_lca
stringclasses
7 values
ground_truth
stringlengths
1
46
in_completions
bool
1 class
completion_type
stringclasses
6 values
non_dunder_count_intellij
int64
0
529
non_dunder_count_jedi
int64
0
128
start_with_
bool
2 classes
first_occurrence
bool
2 classes
intellij_completions
listlengths
1
532
jedi_completions
listlengths
3
148
prefix
stringlengths
162
55k
7,816
223
4,489
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
load_settings
true
function
11
11
false
false
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.
7,817
223
4,518
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
pl
true
statement
11
11
false
false
[ "mc", "platform", "run_t1", "pl", "run_resonator_spectroscopy", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "ins", "load_settings", "run_qubit_spectroscopy", "run_rabi_pulse_length", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.
7,818
223
6,259
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
lorentzian_fit
true
function
12
17
false
false
[ "t1_fit", "rabi_fit", "lorentzian_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.
7,819
223
6,553
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
platform
true
statement
11
11
false
false
[ "platform", "mc", "load_settings", "pl", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.
7,820
223
6,615
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
mc
true
statement
11
11
false
false
[ "mc", "platform", "load_settings", "pl", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.
7,821
223
7,109
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.
7,822
223
7,140
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.
7,823
223
7,173
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
load_settings
true
function
11
11
false
false
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.
7,824
223
7,202
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
pl
true
statement
11
11
false
false
[ "platform", "mc", "pl", "run_t1", "load_settings", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "ins", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.
7,825
223
8,038
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
rabi_fit
true
function
12
17
false
true
[ "t1_fit", "lorentzian_fit", "rabi", "rabi_fit", "ramsey_fit", "BaseAnalysis", "curve_fit", "data_post", "exp", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.
7,826
223
8,794
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
platform
true
statement
11
11
false
false
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.
7,827
223
8,856
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
mc
true
statement
11
11
false
false
[ "mc", "platform", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.
7,828
223
9,446
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.
7,829
223
9,480
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.
7,830
223
9,513
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
load_settings
true
function
11
11
false
false
[ "mc", "platform", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.
7,831
223
9,542
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
pl
true
statement
11
11
false
false
[ "mc", "platform", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.
7,832
223
10,331
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
t1_fit
true
function
12
17
false
true
[ "lorentzian_fit", "rabi_fit", "t1_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.
7,833
223
10,542
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
platform
true
statement
11
11
false
false
[ "platform", "mc", "pl", "load_settings", "run_qubit_spectroscopy", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "ins", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.
7,834
223
11,252
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.
7,835
223
11,391
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.
7,836
223
12,500
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
platform
true
statement
11
11
false
false
[ "platform", "mc", "pl", "load_settings", "callibrate_qubit_states", "__init__", "auto_calibrate_plaform", "ins", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.
7,837
223
12,736
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
run_resonator_spectroscopy
true
function
11
11
false
true
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.
7,838
223
13,689
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
run_qubit_spectroscopy
true
function
11
11
false
true
[ "platform", "mc", "pl", "callibrate_qubit_states", "load_settings", "__init__", "auto_calibrate_plaform", "ins", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.
7,839
223
14,451
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
run_rabi_pulse_length
true
function
11
11
false
true
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.
7,840
223
15,369
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
callibrate_qubit_states
true
function
11
11
false
true
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.
7,843
223
16,540
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
Unknown
qc_pulse
true
statement
6
6
false
true
[ "ro_pulse", "qc_pulse", "name", "unit", "label", "__init__", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "qc_pulse", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.
7,844
223
16,579
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
ro_pulse
true
statement
6
6
false
true
[ "ro_pulse", "qc_pulse", "name", "unit", "label", "__init__", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "qc_pulse", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.
7,848
223
17,001
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
ro_pulse
true
statement
7
7
false
false
[ "ro_pulse", "name", "unit", "label", "initial_value", "__init__", "base_duration", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "base_duration", "type": "statement" }, { "name": "initial_value", "type": "statement" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.
7,850
223
17,023
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
base_duration
true
statement
7
7
false
true
[ "ro_pulse", "base_duration", "name", "unit", "label", "__init__", "initial_value", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "base_duration", "type": "statement" }, { "name": "initial_value", "type": "statement" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.
7,853
223
17,383
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
platform
true
statement
6
6
false
false
[ "platform", "sequence", "name", "unit", "label", "__init__", "get", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "get", "type": "function" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "sequence", "type": "statement" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.base_duration + 4 + value class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.
7,854
223
17,405
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
sequence
true
statement
6
6
false
true
[ "platform", "sequence", "name", "unit", "label", "__init__", "get", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "get", "type": "function" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "sequence", "type": "statement" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.base_duration + 4 + value class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.platform.execute(self.