|
--- |
|
language: |
|
- en |
|
license: cc-by-4.0 |
|
task_categories: |
|
- time-series-forecasting |
|
tags: |
|
- fresh-retail |
|
- imputation |
|
- forecasting |
|
size_categories: |
|
- 1M<n<10M |
|
pretty_name: FreshRetailNet-50K |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train.parquet |
|
- split: eval |
|
path: data/eval.parquet |
|
--- |
|
|
|
# FreshRetailNet-50K |
|
|
|
## Dataset Overview |
|
FreshRetailNet-50K is the first industrial-grade time series dataset in the fresh retail domain, comprises 50,000 store-products which have hourly sales amount for 90 days, and **features about 20% organically out-of-stock data**. It also includes additional important information such as discounts, holiday status and various weather situations. This dataset is an ideal benchmark for future researches on time series imputation and forecasting techniques. |
|
|
|
- [Technical Report](It will be posted later.) - Discover the methodology and technical details behind FreshRetailNet-50K. |
|
- [Github Repo](It will be posted later.) - Access the complete pipeline used to train and evaluate. |
|
|
|
This dataset is ready for commercial/non-commercial use. |
|
|
|
|
|
## Data Fields |
|
|Field|Type|Description| |
|
|:---|:---|:---| |
|
|city_id|int64|The encoded city id| |
|
|store_id|int64|The encoded store id| |
|
|management_group_id|int64|The encoded management group id| |
|
|first_category_id|int64|The encoded first category id| |
|
|second_category_id|int64|The encoded second category id| |
|
|third_category_id|int64|The encoded third category id| |
|
|product_id|int64|The encoded product id| |
|
|dt|string|The date| |
|
|sale_amount|float64|The daily sales amount after global normalization (Multiplied by a specific coefficient)| |
|
|hours_sale|Sequence(float64)|The hourly sales amount after global normalization (Multiplied by a specific coefficient)| |
|
|stock_hour6_22_cnt|int32|The number of out-of-stock hours between 6:00 and 22:00| |
|
|hours_stock_status|Sequence(int32)|The hourly out-of-stock status| |
|
|discount|float64|The discount rate (1.0 means no discount, 0.9 means 10% off)| |
|
|holiday_flag|int32|Holiday indicator| |
|
|activity_flag|int32|Activity indicator| |
|
|precpt|float64|The total precipitation| |
|
|avg_temperature|float64|The average temperature| |
|
|avg_humidity|float64|The average humidity| |
|
|avg_wind_level|float64|The average wind force| |
|
|
|
### Hierarchical structure |
|
- **warehouse**: city_id > store_id |
|
- **product category**: management_group_id > first_category_id > second_category_id > third_category_id > product_id |
|
|
|
|
|
|
|
## How to use it |
|
|
|
You can load the dataset with the following lines of code. |
|
|
|
```python |
|
from datasets import load_dataset |
|
dataset = load_dataset("Dingdong-Inc/FreshRetailNet-50K") |
|
print(dataset) |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'], |
|
num_rows: 4500000 |
|
}) |
|
eval: Dataset({ |
|
features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'], |
|
num_rows: 350000 |
|
}) |
|
}) |
|
``` |
|
|
|
|
|
## License/Terms of Use |
|
|
|
This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0) available at https://creativecommons.org/licenses/by/4.0/legalcode. |
|
|
|
**Data Developer:** Dingdong-Inc |
|
|
|
|
|
### Use Case: <br> |
|
Developers researching time series imputation and forecasting techniques. <br> |
|
|
|
### Release Date: <br> |
|
05/08/2025 <br> |
|
|
|
|
|
## Data Version |
|
1.0 (05/08/2025) |
|
|
|
|
|
## Intended use |
|
|
|
The FreshRetailNet-50K Dataset is intended to be freely used by the community to continue to improve time series imputation and forecasting techniques. |
|
**However, for each dataset an user elects to use, the user is responsible for checking if the dataset license is fit for the intended purpose**. |
|
|
|
|
|
## Citation |
|
|
|
If you find the data useful, please cite: |
|
``` |
|
@article{2025freshretailnet-50k, |
|
title={FreshRetailNet-50K: A Censored Demand Dataset with Stockout Interventions for Inventory-Aware Forecasting in Fresh Retail}, |
|
author={Anonymous Author(s)}, |
|
year={2025}, |
|
eprint={2505.xxxxx}, |
|
archivePrefix={arXiv}, |
|
primaryClass={stat.ML}, |
|
url={https://arxiv.org/abs/2505.xxxxx}, |
|
} |
|
``` |