|
--- |
|
license: cc-by-4.0 |
|
tags: |
|
- PPIs |
|
- mass_spectrometry |
|
- biology |
|
pretty_name: >- |
|
DirectContacts2: A network of direct physical protein interactions derived |
|
from high throughput mass spectrometry experiments |
|
repo: https://github.com/KDrewLab/DirectContacts2_analysis.git |
|
--- |
|
# DirectContacts2: A network of direct physical protein interactions derived from high throughput mass spectrometry experiments |
|
Proteins carry out cellular functions by self-assembling into functional complexes, a process that depends on direct physical interactions |
|
between components. While tools like AlphaFold and RoseTTAFold have advanced structure prediction, they remain limited in scaling to the full |
|
human proteome. DirectContacts2 addresses this challenge by integrating diverse large-scale protrin interaction datasets, including AP/MS (BioPlex1–3, Boldt et al., Hein et al.), |
|
biochemical fractionation (Wan et al.), proximity labeling (Gupta et al., Youn et al.), and RNA pulldown (Treiber et al.), to predict whether ~26 million |
|
human protein pairs interact directly or indirectly. |
|
|
|
## Funding |
|
|
|
NIH R00, NSF/BBSRC |
|
|
|
## Citation |
|
|
|
Erin R. Claussen, Miles D Woodcock-Girard, Samantha N Fischer, Kevin Drew |
|
|
|
## References |
|
Kevin Drew, Christian L. Müller , Richard Bonneau, Edward M. Marcotte (2017) Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. PLOS Computational Biology 13(10): e1005625. https://doi.org/10.1371/journal.pcbi.1005625 |
|
Samantha N. Fischer, Erin R Claussen, Savvas Kourtis, Sara Sdelci, Sandra Orchard, Henning Hermjakob, Georg Kustatscher, Kevin Drew hu.MAP3.0: Atlas of human protein complexes by integration of > 25,000 proteomic experiments. Molecular Systems Biology 1–33 (2025) doi:10.1038/s44320-025-00121-5. |
|
Huttlin et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome Cell. 2021 May 27;184(11):3022-3040.e28. doi: 10.1016/j.cell.2021.04.011. |
|
Huttlin et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017 May 25;545(7655):505-509. DOI: 10.1038/nature22366. |
|
Treiber et al. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.. Mol Cell. 2017 Apr 20;66(2):270-284.e13. doi: 10.1016/j.molcel.2017.03.014. |
|
Boldt et al. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun. 2016 May 13;7:11491. doi: 10.1038/ncomms11491. |
|
Youn et al. High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. Mol Cell. 2018 Feb 1;69(3):517-532.e11. doi: 10.1016/j.molcel.2017.12.020. |
|
Gupta et al. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell. 2015 Dec 3;163(6):1484-99. doi: 10.1016/j.cell.2015.10.065. |
|
Wan, Borgeson et al. Panorama of ancient metazoan macromolecular complexes. Nature. 2015 Sep 17;525(7569):339-44. doi: 10.1038/nature14877. Epub 2015 Sep 7. |
|
Hein et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015 Oct 22;163(3):712-23. doi: 10.1016/j.cell.2015.09.053. Epub 2015 Oct 22. |
|
Huttlin et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015 Jul 16;162(2):425-40. doi: 10.1016/j.cell.2015.06.043. |
|
Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199. |
|
|
|
## Associated code |
|
Additional code examples can be found on our [GitHub](), including: |
|
importing the [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) to make predictions, importing the |
|
training and testing data, or using the full feature matrix. |
|
|
|
# Usage |
|
|
|
## Accessing and using the model |
|
DirectContacts2 was constructed using [AutoGluon](https://auto.gluon.ai/stable/index.html) an auto-ML tool. The module [TabularPredictor](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
is used to is used train, test, and make predictions with the model. |
|
|
|
This can be downloaded using the following: |
|
|
|
$ pip install autogluon==0.4.0 |
|
|
|
Then it can be imported as: |
|
|
|
>>> from autogluon.tabular import TabularPredictor |
|
Note that to perform operations with our model the **0.4.0 version** must be used |
|
|
|
The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed through HuggingFace with [huggingface_hub](https://huggingface.co/docs/hub/index) |
|
|
|
>>> from huggingface_hub import snapshot_download |
|
|
|
>>> model_dir = snapshot_download(repo_id="sfisch/DirectContacts2_AutoGluon") |
|
|
|
>>> predictor = TabularPredictor.load(f"{model_dir}/DirectContacts2_Autogluon_Model_20230405") |
|
|
|
## Using the training and testing data |
|
|
|
Both the train and test feature matrices can be loaded using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. |
|
|
|
This can be done from the command-line using: |
|
|
|
$ pip install datasets |
|
|
|
When loading into Python use the following: |
|
|
|
>>> from datasets import load_dataset |
|
>>> dataset = load_dataset('sfisch/DirectContacts2') |
|
|
|
Training and test feature matrices can then be accessed as separate objects: |
|
|
|
>>> train = dataset["train"].to_pandas() |
|
>>> test = dataset["test"].to_pandas() |
|
|
|
Jupyter notebooks containing more in-depth examples of model training, testing, and generating predictions can be found on our [GitHub](https://github.com/KDrewLab/huMAP3.0_analysis/huMAP3.0_model_devel) |
|
|
|
## Accessing full feature matrix and all test/train interaction/complex files |
|
All other files, such as the full feature matrix, can be accessed via Huggingface_hub. |
|
|
|
>>> from huggingface_hub import hf_hub_download |
|
>>> full_file = hf_hub_download(repo_id="sfisch/DirectContacts2", filename='full/direct_contacts2_full_feature_matrix_20220625.csv.gz', repo_type='dataset') |
|
|
|
This just provides the file for download. Depending on your workflow, if you wish to use as a pandas dataframe for example: |
|
|
|
>>> import pandas as pd |
|
>>> full_featmat = pd.read_csv(full_file, compression="gzip") |
|
|
|
|
|
|
|
## Dataset card authors |
|
Samantha Fischer ([email protected]) |