problem
stringlengths
11
4.03k
answer
stringlengths
0
157
solution
stringlengths
0
11.1k
Circle $B$ has its center at $(-6, 2)$ and a radius of $10$ units. What is the sum of the $y$-coordinates of the two points on circle $B$ that are also on the $y$-axis?
4
In the rectangular coordinate system on a plane, establish a polar coordinate system with $O$ as the pole and the positive semi-axis of $x$ as the polar axis. The parametric equations of the curve $C$ are $\begin{cases} x=1+\cos \alpha \\ y=\sin \alpha \end{cases} (\alpha \text{ is the parameter, } \alpha \in \left[ 0,\pi \right])$, and the polar equation of the line $l$ is $\rho = \frac{4}{\sqrt{2}\sin \left( \theta - \frac{\pi }{4} \right)}$. (I) Write the Cartesian equation of curve $C$ and the polar equation of line $l$. (II) Let $P$ be any point on curve $C$ and $Q$ be any point on line $l$. Find the minimum value of $|PQ|$.
\frac{5 \sqrt{2}}{2}-1
What are all values of $p$ such that for every $q>0$, we have $$\frac{3(pq^2+p^2q+3q^2+3pq)}{p+q}>2p^2q?$$ Express your answer in interval notation in decimal form.
[0,3)
There are 100 people in a room with ages $1,2, \ldots, 100$. A pair of people is called cute if each of them is at least seven years older than half the age of the other person in the pair. At most how many pairwise disjoint cute pairs can be formed in this room?
43
For a cute pair $(a, b)$ we would have $$a \geq \frac{b}{2}+7, b \geq \frac{a}{2}+7$$ Solving the system, we get that $a$ and $b$ must both be at least 14. However 14 could only be paired with itself or a smaller number; therefore, only people with age 15 or above can be paired with someone of different age. Pairing consecutive numbers $(15,16),(17,18), \ldots,(99,100)$ works, giving $\frac{100-14}{2}=43$ pairs.
In isosceles triangle $\triangle ABC$, $A$ is located at the origin and $B$ is located at $(20,0)$. Point $C$ is in the first quadrant with $AC = BC$ and angle $BAC = 75^{\circ}$. If triangle $ABC$ is rotated counterclockwise about point $A$ until the image of $C$ lies on the positive $y$-axis, the area of the region common to the original and the rotated triangle is in the form $p\sqrt{2} + q\sqrt{3} + r\sqrt{6} + s$, where $p,q,r,s$ are integers. Find $\frac{p-q+r-s}2$.
875
Call the points of the intersections of the triangles $D$, $E$, and $F$ as noted in the diagram (the points are different from those in the diagram for solution 1). $\overline{AD}$ bisects $\angle EDE'$. Through HL congruency, we can find that $\triangle AED$ is congruent to $\triangle AE'D$. This divides the region $AEDF$ (which we are trying to solve for) into two congruent triangles and an isosceles right triangle. $AE = 20 \cos 15 = 20 \cos (45 - 30) = 20 \cdot \frac{\sqrt{6} + \sqrt{2}}{4} = 5\sqrt{6} + 5\sqrt{2}$ Since $FE' = AE' = AE$, we find that $[AE'F] = \frac 12 (5\sqrt{6} + 5\sqrt{2})^2 = 100 + 50\sqrt{3}$. Now, we need to find $[AED] = [AE'D]$. The acute angles of the triangles are $\frac{15}{2}$ and $90 - \frac{15}{2}$. By repeated application of the half-angle formula, we can find that $\tan \frac{15}{2} = \sqrt{2} - \sqrt{3} + \sqrt{6} - 2$. The area of $[AED] = \frac 12 \left(20 \cos 15\right)^2 \left(\tan \frac{15}{2}\right)$. Thus, $[AED] + [AE'D] = 2\left(\frac 12((5\sqrt{6} + 5\sqrt{2})^2 \cdot (\sqrt{2} - \sqrt{3} + \sqrt{6} - 2))\right)$, which eventually simplifies to $500\sqrt{2} - 350\sqrt{3} + 300\sqrt{6} - 600$. Adding them together, we find that the solution is $[AEDF] = [AE'F] + [AED] + [AE'D]$ $= 100 + 50\sqrt{3} + 500\sqrt{2} - 350\sqrt{3} + 300\sqrt{6} - 600=$ $= 500\sqrt{2} - 350\sqrt{3} + 300\sqrt{6} - 600$, and the answer is $\boxed{875}$.
In a certain competition, the rules are as follows: among the 5 questions preset by the organizer, if a contestant can answer two consecutive questions correctly, they will stop answering and advance to the next round. Assuming the probability of a contestant correctly answering each question is 0.8, and the outcomes of answering each question are independent of each other, then the probability that the contestant will exactly answer 4 questions before advancing to the next round is
0.128
Let $e > 0$ be a given real number. Find the least value of $f(e)$ (in terms of $e$ only) such that the inequality $a^{3}+ b^{3}+ c^{3}+ d^{3} \leq e^{2}(a^{2}+b^{2}+c^{2}+d^{2}) + f(e)(a^{4}+b^{4}+c^{4}+d^{4})$ holds for all real numbers $a, b, c, d$ .
\frac{1}{4e^2}
Quadrilateral $ABCD$ has right angles at $B$ and $C$, $\triangle ABC \sim \triangle BCD$, and $AB < BC$. There is a point $E$ on line segment $CD$ such that $\triangle ABC \sim \triangle CED$ and the area of $\triangle AED$ is $9$ times the area of $\triangle CED$. What is $\tfrac{BC}{AB}$?
10.25
Each face of two noncongruent parallelepipeds is a rhombus whose diagonals have lengths $\sqrt{21}$ and $\sqrt{31}$. The ratio of the volume of the larger of the two polyhedra to the volume of the smaller is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. A parallelepiped is a solid with six parallelogram faces such as the one shown below. [asy] unitsize(2cm); pair o = (0, 0), u = (1, 0), v = 0.8*dir(40), w = dir(70); draw(o--u--(u+v)); draw(o--v--(u+v), dotted); draw(shift(w)*(o--u--(u+v)--v--cycle)); draw(o--w); draw(u--(u+w)); draw(v--(v+w), dotted); draw((u+v)--(u+v+w)); [/asy]
125
Let us inscribe a tetrahedron $ACB'D'$ in given parallelepiped so that its edges coincide with the diagonals of the faces of the parallelepiped. Note that the three edges outgoing from the vertex $B'$ have the same length $b$, and the three edges at the base have a different length $a.$ The volume of the tetrahedron $V= \frac {a^2}{12}\sqrt{3b^2 - a^2}$ is three times less than the volume of the parallelepiped. In second parallelepiped $a$ and $b$ change the positions. Required ratio is $\frac {a^2 \cdot \sqrt {3b^2 - a^2}}{b^2 \cdot \sqrt {3a^2 - b^2}} = \frac {21 \sqrt {3 \cdot 31 - 21}}{31 \cdot \sqrt{3 \cdot 21 - 31}} = \frac {21 \sqrt {72}}{31 \sqrt {32}}= \frac {63}{62}.$ Claim Let $ABCD$ be the regular pyramid, $AB = AC = AD = b, BC = BD = CD = a.$ The area of $\triangle BCD = \frac {a^2 \sqrt {3}}{4}.$ Height $AO^2 = AB^2 - OB^2 = {b^2 - \frac {a^2}{3}}.$ Volume $V= \frac {a^2}{12}\sqrt{3b^2 - a^2}.$ [email protected], vvsss ~MathProblemSolvingSkills.com ~Star League (https://starleague.us) The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
Given a sequence where each term is either 1 or 2, begins with the term 1, and between the $k$-th term 1 and the $(k+1)$-th term 1 there are $2^{k-1}$ terms of 2 (i.e., $1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1, \cdots$), what is the sum of the first 1998 terms in this sequence?
3985
Let $BCDK$ be a convex quadrilateral such that $BC=BK$ and $DC=DK$ . $A$ and $E$ are points such that $ABCDE$ is a convex pentagon such that $AB=BC$ and $DE=DC$ and $K$ lies in the interior of the pentagon $ABCDE$ . If $\angle ABC=120^{\circ}$ and $\angle CDE=60^{\circ}$ and $BD=2$ then determine area of the pentagon $ABCDE$ .
\sqrt{3}
From the set of integers $\{1,2,3,\dots,2009\}$, choose $k$ pairs $\{a_i,b_i\}$ with $a_i<b_i$ so that no two pairs have a common element. Suppose that all the sums $a_i+b_i$ are distinct and less than or equal to $2009$. Find the maximum possible value of $k$.
803
A projection takes $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ to $\begin{pmatrix} \frac{3}{2} \\ -\frac{3}{2} \end{pmatrix}.$ Which vector does the projection take $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$ to?
\begin{pmatrix} -5/2 \\ 5/2 \end{pmatrix}
Find all integers $m$ and $n$ such that the fifth power of $m$ minus the fifth power of $n$ is equal to $16mn$.
(m, n) = (0, 0) \text{ and } (m, n) = (-2, 2)
We are tasked with finding all integer pairs \((m, n)\) such that: \[ m^5 - n^5 = 16mn \] **Step 1: Algebraic Manipulation** We begin by rewriting the given equation as: \[ m^5 - n^5 - 16mn = 0 \] **Step 2: Factorization** Using the identity for the difference of powers, we have: \[ m^5 - n^5 = (m - n)(m^4 + m^3n + m^2n^2 + mn^3 + n^4) \] Thus, the equation becomes: \[ (m - n)(m^4 + m^3n + m^2n^2 + mn^3 + n^4) = 16mn \] **Step 3: Special Case Analysis** Consider the case when \(m = n\). Substituting into the equation, we get: \[ m^5 - m^5 = 16m^2 \implies 0 = 16m^2 \] This equation holds if and only if \(m = 0\). Therefore, \(n = 0\) as well. Thus, one solution pair is \((m, n) = (0, 0)\). **Step 4: Nontrivial Cases** Now consider \(m \neq n\). Since \(m - n\) is a factor, and \(16mn\) is divisible by \(m - n\), we explore possible values. Rearranging, we have: \[ m^5 - n^5 = 16mn \implies (m-n) \big(m^4 + m^3n + m^2n^2 + mn^3 + n^4\big) = 16mn \] Assume \(m = 2\) and \(n = -2\). Substituting gives: \[ 2^5 - (-2)^5 = 16 \times 2 \times (-2) \] \[ 32 - (-32) = -64 \] Checking: \[ 32 + 32 = 64 \neq -64 \] This previous setup does not work; choose \(m = -2\) and \(n = 2\). Substituting gives: \[ (-2)^5 - 2^5 = 16 \times (-2) \times 2 \] \[ -32 - 32 = -64 \] \[ -64 = -64 \] Thus, \((-2, 2)\) is another solution. **Conclusion** The integer pairs \((m, n)\) that satisfy the given equation are: \[ \boxed{(0, 0) \text{ and } (-2, 2)} \]
Among all the simple fractions where both the numerator and the denominator are two-digit numbers, find the smallest fraction that is greater than $\frac{3}{5}$. Provide the numerator of this fraction in your answer.
59
Given $\tan\left( \frac{\pi}{4} + \alpha \right) = \frac{1}{7}$, with $\alpha \in \left( \frac{\pi}{2}, \pi \right)$, find the value of $\tan\alpha$ and $\cos\alpha$.
-\frac{4}{5}
Alice is jogging north at a speed of 6 miles per hour, and Tom is starting 3 miles directly south of Alice, jogging north at a speed of 9 miles per hour. Moreover, assume Tom changes his path to head north directly after 10 minutes of eastward travel. How many minutes after this directional change will it take for Tom to catch up to Alice?
60
The Minions need to make jam within the specified time. Kevin can finish the job 4 days earlier if he works alone, while Dave would finish 6 days late if he works alone. If Kevin and Dave work together for 4 days and then Dave completes the remaining work alone, the job is completed exactly on time. How many days would it take for Kevin and Dave to complete the job if they work together?
12
In right $\Delta ABC$, $\angle CAB$ is a right angle. Point $M$ is the midpoint of $\overline{BC}$. What is the number of centimeters in the length of median $\overline{AM}$? Express your answer as a decimal to the nearest tenth. [asy] pair A,B,C,M; A = (0,0); B = (4,0); C = (0,3); M = (B+C)/2; draw(M--A--B--C--A); label("$A$",A,W); label("$B$",B,E); label("$C$",C,W); label("$M$",M,NE); label("3 cm",A--C,W); label("4 cm",A--B,S); [/asy]
2.5
If one side of a triangle is $12$ inches and the opposite angle is $30^{\circ}$, then the diameter of the circumscribed circle is:
24
1. **Identify the Known Values:** - One side of the triangle (let's call it $a$) is given as $12$ inches. - The angle opposite to this side ($\angle A$) is $30^\circ$. 2. **Apply the Extended Law of Sines:** - The Extended Law of Sines states that for any triangle, the diameter $D$ of the circumscribed circle can be calculated using the formula: \[ D = \frac{a}{\sin A} \] - Here, $a = 12$ inches and $A = 30^\circ$. 3. **Calculate the Sine of the Angle:** - We know that $\sin 30^\circ = \frac{1}{2}$. 4. **Substitute the Values into the Formula:** - Substitute $a = 12$ inches and $\sin 30^\circ = \frac{1}{2}$ into the formula: \[ D = \frac{12\text{ inches}}{\frac{1}{2}} = 12 \times 2 = 24\text{ inches} \] 5. **Conclusion:** - The diameter of the circumscribed circle around the triangle is $24$ inches. Thus, the correct answer is $\boxed{\textbf{(C)}\ 24\text{ inches}}$.
Given that the sum of the first three terms of a geometric sequence $\{a_n\}$ is $3$ and the sum of the first nine terms is $39$, calculate the value of the sum of the first six terms.
12
In the adjoining figure, two circles with radii $8$ and $6$ are drawn with their centers $12$ units apart. At $P$, one of the points of intersection, a line is drawn in such a way that the chords $QP$ and $PR$ have equal length. Find the square of the length of $QP$. [asy]size(160); defaultpen(linewidth(.8pt)+fontsize(11pt)); dotfactor=3; pair O1=(0,0), O2=(12,0); path C1=Circle(O1,8), C2=Circle(O2,6); pair P=intersectionpoints(C1,C2)[0]; path C3=Circle(P,sqrt(130)); pair Q=intersectionpoints(C3,C1)[0]; pair R=intersectionpoints(C3,C2)[1]; draw(C1); draw(C2); draw(O2--O1); dot(O1); dot(O2); draw(Q--R); label("$Q$",Q,NW); label("$P$",P,1.5*dir(80)); label("$R$",R,NE); label("12",waypoint(O1--O2,0.4),S);[/asy]
130
On January 15 in the stormy town of Stormville, there is a $50\%$ chance of rain. Every day, the probability of it raining has a $50\%$ chance of being $\frac{2017}{2016}$ times that of the previous day (or $100\%$ if this new quantity is over $100\%$ ) and a $50\%$ chance of being $\frac{1007}{2016}$ times that of the previous day. What is the probability that it rains on January 20? *2018 CCA Math Bonanza Lightning Round #3.3*
243/2048
Given that $\frac 1{2!17!}+\frac 1{3!16!}+\frac 1{4!15!}+\frac 1{5!14!}+\frac 1{6!13!}+\frac 1{7!12!}+\frac 1{8!11!}+\frac 1{9!10!}=\frac N{1!18!}$ find the greatest integer that is less than $\frac N{100}$.
137
Calculate: $(10 \times 19 \times 20 \times 53 \times 100 + 601) \div 13 = \ ?$
1549277
In triangle $ABC$, $AC = 13$, $BC = 14$, and $AB=15$. Points $M$ and $D$ lie on $AC$ with $AM=MC$ and $\angle ABD = \angle DBC$. Points $N$ and $E$ lie on $AB$ with $AN=NB$ and $\angle ACE = \angle ECB$. Let $P$ be the point, other than $A$, of intersection of the circumcircles of $\triangle AMN$ and $\triangle ADE$. Ray $AP$ meets $BC$ at $Q$. The ratio $\frac{BQ}{CQ}$ can be written in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m-n$. Diagram [asy] size(250); defaultpen(fontsize(9pt)); picture pic; pair A,B,C,D,E,M,N,P,Q; B=MP("B",origin, SW); C=MP("C", (12.5,0), SE); A=MP("A", IP(CR(C,10),CR(B,15)), dir(90)); N=MP("N", (A+B)/2, dir(180)); M=MP("M", midpoint(C--A), dir(70)); D=MP("D", extension(B,incenter(A,B,C),A,C), dir(C-B)); E=MP("E", extension(C,incenter(A,B,C),A,B), dir(90)); P=MP("P", OP(circumcircle(A,M,N),circumcircle(A,D,E)), dir(-70)); Q = MP("Q", extension(A,P,B,C),dir(-90)); draw(B--C--A--B^^M--P--N^^D--P--E^^A--Q); draw(circumcircle(A,M,N), gray); draw(circumcircle(A,D,E), heavygreen); dot(A);dot(B);dot(C);dot(D);dot(E);dot(P);dot(Q);dot(M);dot(N); [/asy]
218
This problem can be solved with barycentric coordinates. Let triangle $ABC$ be the reference triangle with $A=(1,0,0)$, $B=(0,1,0)$, and $C=(0,0,1)$. Thus, $N=(1:1:0)$ and $M=(1:0:1)$. Using the Angle Bisector Theorem, we can deduce that $D=(14:0:15)$ and $(14:13:0)$. Plugging the coordinates for triangles $ANM$ and $AED$ into the circle formula, we deduce that the equation for triangle $ANM$ is $-a^2yz-b^2zx-c^2xy+(\frac{c^2}{2}y+\frac{b^2}{2}z)(x+y+z)=0$ and the equation for triangle $AED$ is $-a^2yz-b^2zx-c^2xy+(\frac{14c^2}{27}y+\frac{14b^2}{29}z)(x+y+z)=0$. Solving the system of equations, we get that $\frac{c^2y}{54}=\frac{b^2z}{58}$. This equation determines the radical axis of circles $ANM$ and $AED$, on which points $P$ and $Q$ lie. Thus, solving for $\frac{z}{y}$ gets the desired ratio of lengths, and $\frac{z}{y}=\frac{58c^2}{54b^2}$ and plugging in the lengths $b=13$ and $c=15$ gets $\frac{725}{507}$. From this we get the desired answer of $725-507=\boxed{218}$. -wertguk
In the plane rectangular coordinate system \(x O y\), the equation of the ellipse \(C\) is \(\frac{x^{2}}{9}+\frac{y^{2}}{10}=1\). Let \(F\) be the upper focus of \(C\), \(A\) be the right vertex of \(C\), and \(P\) be a moving point on \(C\) located in the first quadrant. Find the maximum area of the quadrilateral \(O A P F\).
\frac{3}{2} \sqrt{11}
Let $a$ , $b$ , $c$ be positive reals for which \begin{align*} (a+b)(a+c) &= bc + 2 (b+c)(b+a) &= ca + 5 (c+a)(c+b) &= ab + 9 \end{align*} If $abc = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$ , compute $100m+n$ . *Proposed by Evan Chen*
4532
Let $f(x) = x^2 + 5x + 4$ and $g(x) = 2x - 3$. Calculate the value of $f(g(-3)) - 2 \cdot g(f(2))$.
-26
What is the smallest positive integer that ends in 3 and is divisible by 11?
113
In the Cartesian coordinate system $xOy$, point $F$ is a focus of the ellipse $C$: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, and point $B_1(0, -\sqrt{3})$ is a vertex of $C$, $\angle OFB_1 = \frac{\pi}{3}$. $(1)$ Find the standard equation of $C$; $(2)$ If point $M(x_0, y_0)$ is on $C$, then point $N(\frac{x_0}{a}, \frac{y_0}{b})$ is called an "ellipse point" of point $M$. The line $l$: $y = kx + m$ intersects $C$ at points $A$ and $B$, and the "ellipse points" of $A$ and $B$ are $P$ and $Q$ respectively. If the circle with diameter $PQ$ passes through point $O$, find the area of $\triangle AOB$.
\sqrt{3}
Evaluate $\lfloor17.2\rfloor+\lfloor-17.2\rfloor$.
-1
What is the area of the region defined by the equation $x^2+y^2 + 2x - 4y - 8 = 3y - 6x + 9$?
\frac{153\pi}{4}
Point \( M \) lies on the edge \( AB \) of cube \( ABCD A_1 B_1 C_1 D_1 \). Rectangle \( MNLK \) is inscribed in square \( ABCD \) in such a way that one of its vertices is at point \( M \), and the other three vertices are located on different sides of the base square. Rectangle \( M_1N_1L_1K_1 \) is the orthogonal projection of rectangle \( MNLK \) onto the plane of the upper face \( A_1B_1C_1D_1 \). The ratio of the side lengths \( MK_1 \) and \( MN \) of quadrilateral \( MK_1L_1N \) is \( \sqrt{54}:8 \). Find the ratio \( AM:MB \).
1:4
Simplify $\frac{10a^3}{55a^2}$ when $a=3$.
\frac{6}{11}
Simplify first, then evaluate: $(1-\frac{2}{x+1})÷\frac{x^2-1}{2x+2}$, where $x=\pi ^{0}+1$.
\frac{2}{3}
Given the function $y=2\sin \left(x+ \frac {\pi}{6}\right)\cos \left(x+ \frac {\pi}{6}\right)$, determine the horizontal shift required to obtain its graph from the graph of the function $y=\sin 2x$.
\frac{\pi}{6}
How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits?
45
A plane has no vertex of a regular dodecahedron on it,try to find out how many edges at most may the plane intersect the regular dodecahedron?
10
On a 10-ring target, the probabilities of hitting scores 10, 9, 8, 7, and 6 are $\frac{1}{5}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8},$ and $\frac{1}{10}$ respectively. The probability of hitting any other score (from 5 to 1) is $\frac{1}{12}$. $A$ pays $B$ the score amount in forints for any hit that is at least 6, and 1.7 forints for any other hit. How much should $B$ pay in case of a miss so that the bet is fair?
96
Joy has $30$ thin rods, one each of every integer length from $1 \text{ cm}$ through $30 \text{ cm}$. She places the rods with lengths $3 \text{ cm}$, $7 \text{ cm}$, and $15 \text{cm}$ on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?
17
1. **Identify the range for the fourth rod**: To form a quadrilateral, the sum of the lengths of any three sides must be greater than the length of the fourth side. This is known as the triangle inequality theorem. We apply this to the three rods of lengths $3 \text{ cm}$, $7 \text{ cm}$, and $15 \text{ cm}$. 2. **Calculate the maximum possible length for the fourth rod**: \[ 3 + 7 + 15 = 25 \] The fourth rod must be less than $25 \text{ cm}$ to satisfy the triangle inequality with the sum of the other three rods. 3. **Calculate the minimum possible length for the fourth rod**: \[ 15 - (3 + 7) = 15 - 10 = 5 \] The fourth rod must be greater than $5 \text{ cm}$ to ensure that the sum of the lengths of the three smaller rods (including the fourth rod) is greater than the length of the longest rod (15 cm). 4. **Determine the valid lengths for the fourth rod**: The fourth rod must be between $6 \text{ cm}$ and $24 \text{ cm}$ inclusive. This gives us the possible lengths as integers from $6$ to $24$. 5. **Count the number of valid rods**: The integers from $6$ to $24$ inclusive are: \[ 6, 7, 8, \ldots, 24 \] The total number of integers in this range is $24 - 6 + 1 = 19$. 6. **Exclude the rods already used**: The rods of lengths $7 \text{ cm}$ and $15 \text{ cm}$ are already used and cannot be chosen again. Therefore, we subtract these two rods from our count: \[ 19 - 2 = 17 \] 7. **Conclusion**: There are $17$ rods that Joy can choose as the fourth rod to form a quadrilateral with positive area. Thus, the answer is $\boxed{\textbf{(B)}\ 17}$.
A foreign investor plans to invest in 3 different projects among 4 candidate cities, with no more than 2 projects in the same city. How many different investment plans are there?
60
In Theresa's first $8$ basketball games, she scored $7, 4, 3, 6, 8, 3, 1$ and $5$ points. In her ninth game, she scored fewer than $10$ points and her points-per-game average for the nine games was an integer. Similarly in her tenth game, she scored fewer than $10$ points and her points-per-game average for the $10$ games was also an integer. What is the product of the number of points she scored in the ninth and tenth games?
40
1. **Calculate the total points from the first 8 games:** \[ 7 + 4 + 3 + 6 + 8 + 3 + 1 + 5 = 37 \] 2. **Determine the points needed in the ninth game for an integer average:** - The total points after 9 games must be a multiple of 9 for the average to be an integer. - The closest multiple of 9 that is greater than 37 is 45. - Therefore, the points scored in the ninth game must be: \[ 45 - 37 = 8 \] 3. **Calculate the new total points after the ninth game:** \[ 37 + 8 = 45 \] 4. **Determine the points needed in the tenth game for an integer average:** - The total points after 10 games must be a multiple of 10 for the average to be an integer. - The closest multiple of 10 that is greater than 45 is 50. - Therefore, the points scored in the tenth game must be: \[ 50 - 45 = 5 \] 5. **Calculate the product of the points scored in the ninth and tenth games:** \[ 8 \times 5 = 40 \] Thus, the product of the number of points Theresa scored in the ninth and tenth games is $\boxed{\textbf{(B)}\ 40}$.
A circle centered at $O$ has radius 1 and contains the point $A$. Segment $AB$ is tangent to the circle at $A$ and $\angle AOB=\theta$. If point $C$ lies on $\overline{OA}$ and $\overline{BC}$ bisects $\angle ABO$, then express $OC$ in terms of $s$ and $c,$ where $s = \sin \theta$ and $c = \cos \theta.$ [asy] pair A,B,C,O; O=(0,0); A=(1,0); C=(0.6,0); B=(1,2); label("$\theta$",(0.1,0),NE); label("$O$",O,S); label("$C$",C,S); label("$A$",A,E); label("$B$",B,E); draw(A--O--B--cycle,linewidth(0.7)); draw(C--B,linewidth(0.7)); draw(Circle(O,1),linewidth(0.7)); [/asy]
\frac{1}{1 + s}
One commercially available ten-button lock may be opened by pressing -- in any order -- the correct five buttons. The sample shown below has $\{1,2,3,6,9\}$ as its combination. Suppose that these locks are redesigned so that sets of as many as nine buttons or as few as one button could serve as combinations. How many additional combinations would this allow?
770
Currently there are ${10 \choose 5}$ possible combinations. With any integer $x$ from $1$ to $9$, the number of ways to choose a set of $x$ buttons is $\sum^{9}_{k=1}{10 \choose k}$. Now we can use the identity $\sum^{n}_{k=0}{n \choose k}=2^{n}$. So the number of additional combinations is just $2^{10}-{10\choose 0}-{10\choose 10}-{10 \choose 5}=1024-1-1-252=\boxed{770}$. Note: A simpler way of thinking to get $2^{10}$ is thinking that each button has two choices, to be black or to be white.
Given that $x$ and $y$ are positive numbers, $\theta \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right)$, and it satisfies $\frac{\sin\theta}{x} = \frac{\cos\theta}{y}$ and $\frac{\cos^2\theta}{x^2} + \frac{\sin^2\theta}{y^2} = \frac{10}{3(x^2+y^2)}$, determine the value of $\frac{x}{y}$.
\sqrt{3}
The angles of a convex $n$-sided polygon form an arithmetic progression whose common difference (in degrees) is a non-zero integer. Find the largest possible value of $n$ for which this is possible.
27
The exterior angles form an arithmetic sequence too (since they are each $180^{\circ}$ minus the corresponding interior angle). The sum of this sequence must be $360^{\circ}$. Let the smallest exterior angle be $x$ and the common difference be $d$. The sum of the exterior angles is then $x+(x+a)+(x+2a)+\ldots+(x+(n-1)a)=\frac{n(n-1)}{2} \cdot a+nx$. Setting this to 360, and using $nx>0$, we get $n(n-1)<720$, so $n \leq 27$.
Take a unit sphere \(S\), i.e., a sphere with radius 1. Circumscribe a cube \(C\) about \(S\), and inscribe a cube \(D\) in \(S\) such that every edge of cube \(C\) is parallel to some edge of cube \(D\). What is the shortest possible distance from a point on a face of \(C\) to a point on a face of \(D\)?
1 - \frac{\sqrt{3}}{3}
Let $a,$ $b,$ $c$ be nonnegative real numbers such that $a + b + c = 1.$ Find the maximum value of \[\frac{ab}{a + b} + \frac{ac}{a + c} + \frac{bc}{b + c}.\]
\frac{1}{2}
Let \(ABCD\) be a square of side length 5. A circle passing through \(A\) is tangent to segment \(CD\) at \(T\) and meets \(AB\) and \(AD\) again at \(X \neq A\) and \(Y \neq A\), respectively. Given that \(XY = 6\), compute \(AT\).
\sqrt{30}
Calculate the integer nearest to $500\sum_{n=4}^{10005}\frac{1}{n^2-9}$.
174
Simplify the following expression: $$5x + 6 - x + 12$$
4x + 18
In a game of Fish, R2 and R3 are each holding a positive number of cards so that they are collectively holding a total of 24 cards. Each player gives an integer estimate for the number of cards he is holding, such that each estimate is an integer between $80 \%$ of his actual number of cards and $120 \%$ of his actual number of cards, inclusive. Find the smallest possible sum of the two estimates.
20
To minimize the sum, we want each player to say an estimate as small as possible-i.e. an estimate as close to $80 \%$ of his actual number of cards as possible. We claim that the minimum possible sum is 20. First, this is achievable when R2 has 10 cards and estimates 8, and when R3 has 14 cards and estimates 12. Then, suppose that R2 has $x$ cards and R3 has $24-x$. Then, the sum of their estimates is $$\left\lceil\frac{4}{5}(x)\right\rceil+\left\lceil\frac{4}{5}(24-x)\right\rceil \geq\left\lceil\frac{4}{5}(x)+\frac{4}{5}(24-x)\right\rceil \geq\left\lceil\frac{4}{5}(24)\right\rceil \geq 20$$ Note: We use the fact that for all real numbers $a, b,\lceil a\rceil+\lceil b\rceil \geq\lceil a+b\rceil$.
Twenty tiles are numbered 1 through 20 and are placed into box $C$. Twenty other tiles numbered 15 through 34 are placed into box $D$. One tile is randomly drawn from each box. What is the probability that the tile from box $C$ is less than 18 and the tile from box $D$ is either odd or greater than 30? Express your answer as a common fraction.
\frac{17}{40}
Let $(a_1, a_2, \dots ,a_{10})$ be a list of the first 10 positive integers such that for each $2 \le i \le 10$ either $a_i+1$ or $a_i-1$ or both appear somewhere before $a_i$ in the list. How many such lists are there?
512
To solve this problem, we need to understand how the lists can be constructed under the given constraints. The key constraint is that for each $a_i$ where $i \geq 2$, either $a_i + 1$ or $a_i - 1$ (or both) must appear before $a_i$ in the list. This constraint guides the order in which numbers can be added to the list. #### Step-by-step construction: 1. **Base Case:** Start with the smallest list possible under the constraints. For $n=2$, the valid lists are $(1,2)$ and $(2,1)$. This is because both lists satisfy the condition that for each $a_i$ where $i \geq 2$, either $a_i + 1$ or $a_i - 1$ appears before $a_i$. Thus, $F(2) = 2$. 2. **Recursive Construction:** For each list of length $k$, we can construct two valid lists of length $k+1$: - **Method 1:** Append the next integer $k+1$ to the existing list. This is valid because $k$ (which is $a_k$) is already in the list, and $k+1$ will have $k$ before it. - **Method 2:** Increase each element of the list by 1, and then append the number 1 at the end. This transforms a list $(a_1, a_2, \dots, a_k)$ to $(a_1+1, a_2+1, \dots, a_k+1, 1)$. This is valid because the new number 1 at the end has no predecessor requirement, and all other numbers $a_i+1$ have their required $a_i$ or $a_i+2$ in the list. 3. **Recursive Formula:** Given that we can create two new lists from each list of length $k$, the number of lists of length $k+1$ is double the number of lists of length $k$. Therefore, we have the recursive relation: \[ F(n) = 2 \cdot F(n-1) \] With the initial condition $F(2) = 2$. 4. **Calculating $F(10)$:** \[ F(3) = 2 \cdot F(2) = 2 \cdot 2 = 4 \] \[ F(4) = 2 \cdot F(3) = 2 \cdot 4 = 8 \] \[ F(5) = 2 \cdot F(4) = 2 \cdot 8 = 16 \] \[ F(6) = 2 \cdot F(5) = 2 \cdot 16 = 32 \] \[ F(7) = 2 \cdot F(6) = 2 \cdot 32 = 64 \] \[ F(8) = 2 \cdot F(7) = 2 \cdot 64 = 128 \] \[ F(9) = 2 \cdot F(8) = 2 \cdot 128 = 256 \] \[ F(10) = 2 \cdot F(9) = 2 \cdot 256 = 512 \] Thus, the number of such lists of the first 10 positive integers is $\boxed{\textbf{(B)}\ 512}$.
Given that there is a gathering attended by 1982 people, and among any group of 4 people, at least 1 person knows the other 3. How many people, at minimum, must know all the attendees at this gathering?
1979
Find the coefficient of $x^3$ in the expansion of $(1-x)^5(3+x)$.
-20
If $\log_{10}{m}= b-\log_{10}{n}$, then $m=$
\frac{10^{b}}{n}
1. Start by expressing $b$ in terms of logarithm base 10: \[ b = \log_{10}{10^b} \] This follows from the property of logarithms that $\log_b{b^x} = x$. 2. Substitute this expression for $b$ into the given equation: \[ \log_{10}{m} = \log_{10}{10^b} - \log_{10}{n} \] 3. Apply the logarithmic property that states $\log{a} - \log{b} = \log{\frac{a}{b}}$: \[ \log_{10}{m} = \log_{10}{\frac{10^b}{n}} \] 4. Since $\log_{10}{m} = \log_{10}{\frac{10^b}{n}}$, by the property of logarithms that if $\log_b{x} = \log_b{y}$, then $x = y$, we conclude: \[ m = \frac{10^b}{n} \] 5. Therefore, the value of $m$ is $\boxed{\mathrm{(E) }\dfrac{10^b}{n}}$.
A piece of string fits exactly once around the perimeter of a rectangle whose area is 180. The ratio of the length to the width of the rectangle is 3:2. Rounded to the nearest whole number, what is the area of the largest circle that can be formed from this piece of string?
239
If the function $f(x) = \frac{1}{2}(m-2)x^2 + (n-8)x + 1$ with $m \geq 0$ and $n \geq 0$ is monotonically decreasing in the interval $\left[\frac{1}{2}, 2\right]$, then the maximum value of $mn$ is __________.
18
A cat is going up a stairwell with ten stairs. The cat can jump either two or three stairs at each step, or walk the last step if necessary. How many different ways can the cat go from the bottom to the top?
12
A 20-quart container is fully filled with water. Five quarts are removed and replaced with pure antifreeze liquid. Then, five quarts of the mixture are removed and replaced with pure antifreeze. This process is repeated three more times (for a total of five times). Determine the fractional part of the final mixture that is water.
\frac{243}{1024}
Parabola C is defined by the equation y²=2px (p>0). A line l with slope k passes through point P(-4,0) and intersects with parabola C at points A and B. When k=$\frac{1}{2}$, points A and B coincide. 1. Find the equation of parabola C. 2. If A is the midpoint of PB, find the length of |AB|.
2\sqrt{11}
Let $(x,y,z)$ be an ordered triplet of real numbers that satisfies the following system of equations: \begin{align*}x+y^2+z^4&=0,y+z^2+x^4&=0,z+x^2+y^4&=0.\end{align*} If $m$ is the minimum possible value of $\lfloor x^3+y^3+z^3\rfloor$ , find the modulo $2007$ residue of $m$ .
2004
Find the number of 7 -tuples $\left(n_{1}, \ldots, n_{7}\right)$ of integers such that $$\sum_{i=1}^{7} n_{i}^{6}=96957$$
2688
Consider the equation in modulo 9. All perfect 6 th powers are either 0 or 1. Since 9 divides 96957, it must be that each $n_{i}$ is a multiple of 3. Writing $3 a_{i}=n_{i}$ and dividing both sides by $3^{6}$, we have $a_{1}^{6}+\cdots+a_{7}^{6}=133$. Since sixth powers are nonnegative, $\left|a_{i}\right| \leq 2$. Again considering modulo 9, we see that $a_{i} \neq 0$. Thus, $a_{i}^{6} \in\{1,64\}$. The only possibility is $133=64+64+1+1+1+1+1$, so $\left|a_{1}\right|, \ldots,\left|a_{7}\right|$ consists of 22 's and 51 's. It follows that the answer is $\binom{7}{2} \cdot 2^{7}=2688$.
Given the universal set $U=\{2,3,5\}$, and $A=\{x|x^2+bx+c=0\}$. If $\complement_U A=\{2\}$, then $b=$ ____, $c=$ ____.
15
In triangle $\triangle ABC$, the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$ respectively. $(1)$ If $2a\sin B = \sqrt{3}b$, find the measure of angle $A$. $(2)$ If the altitude on side $BC$ is equal to $\frac{a}{2}$, find the maximum value of $\frac{c}{b} + \frac{b}{c}$.
2\sqrt{2}
For $p=1, 2, \cdots, 10$ let $S_p$ be the sum of the first $40$ terms of the arithmetic progression whose first term is $p$ and whose common difference is $2p-1$; then $S_1+S_2+\cdots+S_{10}$ is
80200
1. **Identify the $40$th term of the sequence**: For an arithmetic progression (AP) with first term $a = p$ and common difference $d = 2p - 1$, the $n$th term of the AP is given by: \[ a_n = a + (n-1)d = p + (n-1)(2p-1). \] Substituting $n = 40$, we get: \[ a_{40} = p + 39(2p - 1) = p + 78p - 39 = 79p - 39. \] 2. **Calculate the sum of the first $40$ terms**: The sum $S_n$ of the first $n$ terms of an AP is given by: \[ S_n = \frac{n}{2}(a + a_n). \] Substituting $n = 40$, $a = p$, and $a_{40} = 79p - 39$, we find: \[ S_{40} = \frac{40}{2}(p + 79p - 39) = 20(80p - 39) = 1600p - 780. \] 3. **Sum the values of $S_p$ for $p = 1$ to $10$**: We need to evaluate: \[ \sum_{p=1}^{10} S_p = \sum_{p=1}^{10} (1600p - 780). \] This can be split into two separate sums: \[ \sum_{p=1}^{10} (1600p - 780) = 1600\sum_{p=1}^{10} p - \sum_{p=1}^{10} 780. \] The sum of the first $10$ integers is: \[ \sum_{p=1}^{10} p = \frac{10 \cdot 11}{2} = 55. \] Therefore, the first part of our sum is: \[ 1600 \cdot 55 = 88000. \] The second part, since $780$ is a constant, is: \[ 780 \cdot 10 = 7800. \] Combining these, we get: \[ 88000 - 7800 = 80200. \] 4. **Conclude with the final answer**: \[ \boxed{\text{B}} \]
The bases \( AB \) and \( CD \) of the trapezoid \( ABCD \) are equal to 65 and 31 respectively, and its lateral sides are mutually perpendicular. Find the dot product of the vectors \( \overrightarrow{AC} \) and \( \overrightarrow{BD} \).
-2015
A ball travels on a parabolic path in which the height (in feet) is given by the expression $-16t^2+64t+31$, where $t$ is the time after launch. What is the maximum height of the ball, in feet?
95
Let $ 2^{1110} \equiv n \bmod{1111} $ with $ 0 \leq n < 1111 $ . Compute $ n $ .
1024
In a rectangular prism $A^{\prime}C$, with $AB=5$, $BC=4$, and $B^{\prime}B=6$, $E$ is the midpoint of $AA^{\prime}$. Find the distance between the skew lines $BE$ and $A^{\prime}C^{\prime}$.
\frac{60}{\sqrt{769}}
Given the function $f(x) = \frac{e^x - 1}{e^x + 1}$, let $g(x) = f(x - 1) + 1$. Define the sequence $\{a_n\}$ such that $a_n = g\left(\frac{1}{n}\right) + g\left(\frac{2}{n}\right) + g\left(\frac{3}{n}\right) + \dots + g\left(\frac{2n - 1}{n}\right)$, where $n$ is a positive integer. The sum of the first $n$ terms of sequence $\{a_n\}$ is denoted by $S_n$. (1) Find a general formula for the terms of sequence $\{a_n\}$. (2) If the sequence $\{b_n\}$ is an arithmetic sequence, and $b_n = \frac{2S_n - n}{n + c}$, find the non-zero constant $c$. (3) Let $c_n = \frac{1}{a_n a_{n+1}}$. If the sum of the first $n$ terms of sequence $\{c_n\}$ is denoted by $T_n$, find the largest positive integer $k$ such that the inequality $T_n > \frac{k}{57}$ holds for all positive integers $n$.
k = 18
Twelve standard 6-sided dice are rolled. What is the probability that exactly two of the dice show a 1? Express your answer as a decimal rounded to the nearest thousandth.
0.296
A two-digit positive integer $x$ has the property that when 109 is divided by $x$, the remainder is 4. What is the sum of all such two-digit positive integers $x$?
71
Suppose that the quotient of the division of 109 by $x$ is $q$. Since the remainder is 4, this is equivalent to $109=q x+4$ or $q x=105$. Put another way, $x$ must be a positive integer divisor of 105. Since $105=5 imes 21=5 imes 3 imes 7$, its positive integer divisors are $1,3,5,7,15,21,35,105$. Of these, 15,21 and 35 are two-digit positive integers so are the possible values of $x$. The sum of these values is $15+21+35=71$.
Given the sequence $\{a_n\}$ satisfies $a_1=1$, $a_2=4$, $a_3=9$, $a_n=a_{n-1}+a_{n-2}-a_{n-3}$, for $n=4,5,...$, calculate $a_{2017}$.
8065
If \( a \) and \( b \) are given real numbers, and \( 1 < a < b \), then the absolute value of the difference between the average and the median of the four numbers \( 1, a+1, 2a+b, a+b+1 \) is ______.
\frac{1}{4}
Given that $z$ is a complex number such that $z+\frac 1z=2\cos 3^\circ$, find the least integer that is greater than $z^{2000}+\frac 1{z^{2000}}$.
0
Let $z=re^{i\theta}$. Notice that we have $2\cos(3^{\circ})=e^{i\frac{\pi}{60}}+e^{-i\frac{\pi}{60}}=re^{i\theta}+\frac{1}{r}e^{-i\theta}.$ $r$ must be $1$ (or else if you take the magnitude would not be the same). Therefore, $z=e^{i\frac{\pi}{\theta}}$ and plugging into the desired expression, we get $e^{i\frac{100\pi}{3}}+e^{-i\frac{100\pi}{3}}=2\cos{\frac{100\pi}{3}}=-1$. Therefore, the least integer greater is $\boxed{000}.$ ~solution by williamgolly
Solve in positive integers the following equation: \[{1\over n^2}-{3\over 2n^3}={1\over m^2}\]
(m, n) = (4, 2)
To solve the equation in positive integers: \[ \frac{1}{n^2} - \frac{3}{2n^3} = \frac{1}{m^2}, \] we start by simplifying the left-hand side of the equation. Begin by finding a common denominator: \[ \frac{1}{n^2} - \frac{3}{2n^3} = \frac{2}{2n^2} - \frac{3}{2n^3}. \] The common denominator is \(2n^3\), so write both fractions with this common denominator: \[ = \frac{2n}{2n^3} - \frac{3}{2n^3} = \frac{2n - 3}{2n^3}. \] Thus, the equation becomes: \[ \frac{2n - 3}{2n^3} = \frac{1}{m^2}. \] Cross-multiply to clear the fractions: \[ m^2 (2n - 3) = 2n^3. \] Rearrange to: \[ 2n^3 = m^2 (2n - 3). \] Now, to find integer solutions, notice that \(n = 2\) is a reasonable guess to check. Substitute \(n = 2\) into the equation: \[ 2(2)^3 = m^2 (2 \times 2 - 3). \] Calculate each term: \[ 2 \times 8 = m^2 \times 1, \] which simplifies to: \[ 16 = m^2. \] Solving for \(m\) gives: \[ m = \sqrt{16} = 4. \] Thus, we find that \((m, n) = (4, 2)\), which satisfies the original equation. Therefore, the positive integer solution is: \[ \boxed{(m, n) = (4, 2)} \] This is the complete solution to the given equation in positive integers.
A student must choose a program of four courses from a list of courses consisting of English, Algebra, Geometry, History, Art, and Latin. This program must contain English and at least one mathematics course. In how many ways can this program be chosen?
9
Convert the binary number \(11111011111_2\) to its decimal representation.
2015
How many square units are in the area of the triangle whose vertices are the $x$ and $y$ intercepts of the curve $y = (x-3)^2 (x+2)$?
45
According to the table below, how many dollars are in the median value of the 59 salaries paid to this company's employees? \begin{tabular}{|c|c|c|} \hline \textbf{Position Title}&\textbf{\# with Title}&\textbf{Salary}\\\hline President&1&$\$130{,}000$\\\hline Vice-President&5&$\$90{,}000$\\\hline Director&10&$\$75{,}000$\\\hline Associate Director&6&$\$50{,}000$\\\hline Administrative Specialist&37&$\$23{,}000$\\\hline \end{tabular}
\$23{,}000
Points $A_1, A_2, \ldots, A_{2022}$ are chosen on a plane so that no three of them are collinear. Consider all angles $A_iA_jA_k$ for distinct points $A_i, A_j, A_k$ . What largest possible number of these angles can be equal to $90^\circ$ ? *Proposed by Anton Trygub*
2,042,220
Given an isosceles triangle DEF with DE = DF = 5√3, a circle with radius 6 is tangent to DE at E and to DF at F. If the altitude from D to EF intersects the circle at its center, find the area of the circle that passes through vertices D, E, and F.
36\pi
In the plane rectangular coordinate system $xOy$, the parametric equations of curve $C$ are $\left\{\begin{array}{l}{x=2+3\cos\alpha,}\\{y=3\sin\alpha}\end{array}\right.$ ($\alpha$ is the parameter). Taking the coordinate origin $O$ as the pole and the non-negative $x$-axis as the polar axis to establish a polar coordinate system, the polar coordinate equation of the line $l$ is $2\rho \cos \theta -\rho \sin \theta -1=0$. $(1)$ Find the Cartesian equation of curve $C$ and the rectangular coordinate equation of line $l$; $(2)$ If line $l$ intersects curve $C$ at points $A$ and $B$, and point $P(0,-1)$, find the value of $\frac{1}{|PA|}+\frac{1}{|PB|}$.
\frac{3\sqrt{5}}{5}
The storage capacity of two reservoirs, A and B, changes over time. The relationship between the storage capacity of reservoir A (in hundred tons) and time $t$ (in hours) is: $f(t) = 2 + \sin t$, where $t \in [0, 12]$. The relationship between the storage capacity of reservoir B (in hundred tons) and time $t$ (in hours) is: $g(t) = 5 - |t - 6|$, where $t \in [0, 12]$. The question is: When do the combined storage capacities of reservoirs A and B reach their maximum value? And what is this maximum value? (Reference data: $\sin 6 \approx -0.279$).
6.721
Two dice are thrown one after the other, and the numbers obtained are denoted as $a$ and $b$. (Ⅰ) Find the probability that $a^2 + b^2 = 25$; (Ⅱ) Given that the lengths of three line segments are $a$, $b$, and $5$, find the probability that these three line segments can form an isosceles triangle.
\dfrac{7}{18}
Given the function $f(x)=\sin (\omega x+ \frac {\pi}{3})$ ($\omega > 0$), if $f( \frac {\pi}{6})=f( \frac {\pi}{3})$ and $f(x)$ has a minimum value but no maximum value in the interval $( \frac {\pi}{6}, \frac {\pi}{3})$, determine the value of $\omega$.
\frac {14}{3}
To prepare a certain dye, it is necessary to add three types of organic dyes, two types of inorganic dyes, and two types of additives. The addition order of the organic dyes cannot be adjacent. Now, to study the impact of all different addition orders on the dyeing effect, the total number of experiments to be conducted is. (Answer with a number)
1440
There are $27$ unit cubes. We are marking one point on each of the two opposing faces, two points on each of the other two opposing faces, and three points on each of the remaining two opposing faces of each cube. We are constructing a $3\times 3 \times 3$ cube with these $27$ cubes. What is the least number of marked points on the faces of the new cube?
90
When simplified, $\log_{16}{32} \cdot \log_{16}{\frac{1}{2}}$ becomes: **A)** $-\frac{1}{4}$ **B)** $-\frac{5}{16}$ **C)** $\frac{5}{16}$ **D)** $-\frac{1}{16}$ **E)** $0$
-\frac{5}{16}
Square $EFGH$ is inside the square $ABCD$ so that each side of $EFGH$ can be extended to pass through a vertex of $ABCD$. Square $ABCD$ has side length $\sqrt {50}$ and $BE = 1$. What is the area of the inner square $EFGH$?
36
1. **Understanding the Problem Setup:** - We have two squares, $ABCD$ and $EFGH$, where $EFGH$ is inside $ABCD$. - Each side of $EFGH$ can be extended to pass through a vertex of $ABCD$. - The side length of $ABCD$ is given as $\sqrt{50}$. - The distance from vertex $B$ of square $ABCD$ to the nearest point $E$ on square $EFGH$ is given as $1$. 2. **Visualizing the Configuration:** - Since $EFGH$ is tilted such that its sides extended pass through the vertices of $ABCD$, it forms a 45-degree angle with the sides of $ABCD$. - This configuration implies that $EFGH$ is rotated 45 degrees relative to $ABCD$. 3. **Applying the Pythagorean Theorem:** - Consider the right triangle formed by the points $B$, $E$, and the vertex of $ABCD$ through which the line extending $EH$ passes (let's call this vertex $A$). - The length of $BE$ is $1$, and the length of $EA$ (which is the hypotenuse of this right triangle) is $\sqrt{50}$. - Let $x$ be the side length of square $EFGH$. The length from $E$ to $A$ along the side of $ABCD$ is $x + 1$ (since $E$ is $1$ unit away from $B$ and $x$ units away from $A$ along the diagonal of $ABCD$). 4. **Setting Up the Equation:** - By the Pythagorean Theorem, we have: \[ 1^2 + (x+1)^2 = (\sqrt{50})^2 \] - Simplifying, we get: \[ 1 + (x+1)^2 = 50 \] \[ (x+1)^2 = 49 \] \[ x+1 = 7 \quad \text{(since $x+1$ must be positive)} \] \[ x = 6 \] 5. **Calculating the Area of Square $EFGH$:** - The area of square $EFGH$ is given by $x^2$: \[ \text{Area} = 6^2 = 36 \] 6. **Conclusion:** - The area of the inner square $EFGH$ is $\boxed{36}$, corresponding to choice $\mathrm{(C)}$.
In triangle $ABC$, we have $\angle A = 90^\circ$ and $\sin B = \frac{4}{7}$. Find $\cos C$.
\frac47
In triangle $\triangle ABC$, given that $A=60^{\circ}$ and $BC=4$, the diameter of the circumcircle of $\triangle ABC$ is ____.
\frac{8\sqrt{3}}{3}
A circle has an area of $\pi$ square units. What is the length of the circle's diameter, in units?
2
Find the product of all constants \(t\) such that the quadratic \(x^2 + tx + 12\) can be factored in the form \((x+a)(x+b)\), where \(a\) and \(b\) are integers.
-530,784
The equation $x^3 - 4x^2 + 5x - \frac{19}{10} = 0$ has real roots $r,$ $s,$ and $t.$ Find the area of the triangle with sides $r,$ $s,$ and $t.$
\frac{\sqrt{5}}{5}
Let $ABC$ be a non-equilateral triangle with integer sides. Let $D$ and $E$ be respectively the mid-points of $BC$ and $CA$ ; let $G$ be the centroid of $\Delta{ABC}$ . Suppose, $D$ , $C$ , $E$ , $G$ are concyclic. Find the least possible perimeter of $\Delta{ABC}$ .
37
Let $K$ be the measure of the area bounded by the $x$-axis, the line $x=8$, and the curve defined by \[f=\{(x,y)\quad |\quad y=x \text{ when } 0 \le x \le 5, y=2x-5 \text{ when } 5 \le x \le 8\}.\] Then $K$ is:
36.5
1. **Identify the functions and intervals:** The function $f(x)$ is defined piecewise: - For $0 \leq x \leq 5$, $f(x) = x$. - For $5 \leq x \leq 8$, $f(x) = 2x - 5$. 2. **Calculate the area of the triangle formed by the first part of the function:** - The triangle is formed by the line $y = x$ from $x = 0$ to $x = 5$ and the $x$-axis. - The base of the triangle is $5$ (from $x = 0$ to $x = 5$) and the height is also $5$ (since $y = x$). - The area $A_1$ of the triangle is given by: \[ A_1 = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 5 \times 5 = \frac{25}{2}. \] 3. **Calculate the area of the trapezoid formed by the second part of the function:** - The trapezoid is formed between $x = 5$ and $x = 8$. - At $x = 5$, $f(x) = 2(5) - 5 = 5$. - At $x = 8$, $f(x) = 2(8) - 5 = 11$. - The two bases of the trapezoid are $5$ and $11$, and the height (distance along the $x$-axis) is $3$ (from $x = 5$ to $x = 8$). - The area $A_2$ of the trapezoid is given by: \[ A_2 = \frac{1}{2} \times (\text{base}_1 + \text{base}_2) \times \text{height} = \frac{1}{2} \times (5 + 11) \times 3 = \frac{1}{2} \times 16 \times 3 = 24. \] 4. **Sum the areas to find the total area $K$:** \[ K = A_1 + A_2 = \frac{25}{2} + 24 = \frac{25}{2} + \frac{48}{2} = \frac{73}{2} = 36.5. \] 5. **Conclude with the final answer:** \[ \boxed{\textbf{(C) } 36.5} \]