problem
stringlengths
11
4.03k
answer
stringlengths
0
157
solution
stringlengths
0
11.1k
If the graph of the function $f(x)=3\sin(2x+\varphi)$ is symmetric about the point $\left(\frac{\pi}{3},0\right)$ $(|\varphi| < \frac{\pi}{2})$, determine the equation of one of the axes of symmetry of the graph of $f(x)$.
\frac{\pi}{12}
The decimal $0.76$ is equal to the fraction $\frac{4b+19}{6b+11}$, where $b$ is a positive integer. What is the value of $b$?
19
If the square roots of a number are $2a+3$ and $a-18$, then this number is ____.
169
Given that \begin{align*}x_{1}&=211,\\ x_{2}&=375,\\ x_{3}&=420,\\ x_{4}&=523,\ \text{and}\\ x_{n}&=x_{n-1}-x_{n-2}+x_{n-3}-x_{n-4}\ \text{when}\ n\geq5, \end{align*} find the value of $x_{531}+x_{753}+x_{975}$.
898
Calculate the first few terms: \[211,375,420,523,267,-211,-375,-420,-523,\dots\] At this point it is pretty clear that the sequence is periodic with period 10 (one may prove it quite easily like in solution 1) so our answer is obviously $211+420+267=\boxed{898}$ ~Dhillonr25 ~ pi_is_3.14
For \(0 \leq x \leq 1\) and positive integer \(n\), let \(f_0(x) = |1 - 2x|\) and \(f_n(x) = f_0(f_{n-1}(x))\). How many solutions are there to the equation \(f_{10}(x) = x\) in the range \(0 \leq x \leq 1\)?
2048
In Mr. Fox's class, there are seven more girls than boys, and the total number of students is 35. What is the ratio of the number of girls to the number of boys in his class? **A)** $2 : 3$ **B)** $3 : 2$ **C)** $4 : 3$ **D)** $5 : 3$ **E)** $7 : 4$
3 : 2
On each spin of the spinner shown, the arrow is equally likely to stop on any one of the four numbers. Deanna spins the arrow on the spinner twice. She multiplies together the two numbers on which the arrow stops. Which product is most likely to occur?
4
We make a chart that lists the possible results for the first spin down the left side, the possible results for the second spin across the top, and the product of the two results in the corresponding cells: \begin{tabular}{c|cccc} & 1 & 2 & 3 & 4 \\ \hline 1 & 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 6 & 8 \\ 3 & 3 & 6 & 9 & 12 \\ 4 & 4 & 8 & 12 & 16 \end{tabular} Since each spin is equally likely to stop on \( 1,2,3 \), or 4, then each of the 16 products shown in the chart is equally likely. Since the product 4 appears three times in the table and this is more than any of the other numbers, then it is the product that is most likely to occur.
What is the probability of randomly drawing three different numbers from the set {1, 2, ..., 10} such that their sample variance \( s^2 \leqslant 1 \)?
1/15
A lighthouse emits a yellow signal every 15 seconds and a red signal every 28 seconds. The yellow signal is first seen 2 seconds after midnight, and the red signal is first seen 8 seconds after midnight. At what time will both signals be seen together for the first time?
92
Victor has $3$ piles of $3$ cards each. He draws all of the cards, but cannot draw a card until all the cards above it have been drawn. (For example, for his first card, Victor must draw the top card from one of the $3$ piles.) In how many orders can Victor draw the cards?
1680
There are 2016 points arranged on a circle. We are allowed to jump 2 or 3 points clockwise at will. How many jumps must we make at least to reach all the points and return to the starting point again?
2017
If \( 8 + 6 = n + 8 \), what is the value of \( n \)?
6
Since \( 8+6=n+8 \), then subtracting 8 from both sides, we obtain \( 6=n \) and so \( n \) equals 6.
Let $ABC$ be a right triangle with hypotenuse $AC$. Let $B^{\prime}$ be the reflection of point $B$ across $AC$, and let $C^{\prime}$ be the reflection of $C$ across $AB^{\prime}$. Find the ratio of $[BCB^{\prime}]$ to $[BC^{\prime}B^{\prime}]$.
1
Since $C, B^{\prime}$, and $C^{\prime}$ are collinear, it is evident that $[BCB^{\prime}]=\frac{1}{2}[BCC^{\prime}]$. It immediately follows that $[BCB^{\prime}]=[BC^{\prime}B^{\prime}]$. Thus, the ratio is 1.
During the fight against the epidemic, a certain store purchased a type of disinfectant product at a cost of $8$ yuan per item. It was found during the sales process that there is a linear relationship between the daily sales quantity $y$ (items) and the selling price per item $x$ (yuan) (where $8\leqslant x\leqslant 15$, and $x$ is an integer). Some corresponding values are shown in the table below: | Selling Price (yuan) | $9$ | $11$ | $13$ | |----------------------|-----|------|------| | Daily Sales Quantity (items) | $105$ | $95$ | $85$ | $(1)$ Find the function relationship between $y$ and $x$. $(2)$ If the store makes a profit of $425$ yuan per day selling this disinfectant product, what is the selling price per item? $(3)$ Let the store's profit from selling this disinfectant product per day be $w$ (yuan). When the selling price per item is what amount, the daily sales profit is maximized? What is the maximum profit?
525
Given that $\alpha$ and $\beta$ are acute angles, $\cos\alpha=\frac{{\sqrt{5}}}{5}$, $\cos({\alpha-\beta})=\frac{3\sqrt{10}}{10}$, find the value of $\cos \beta$.
\frac{\sqrt{2}}{10}
Let \( g(x) \) be the function defined on \(-2 \le x \le 2\) by the formula \[ g(x) = 2 - \sqrt{4 - x^2}. \] If a graph of \( x = g(y) \) is overlaid on the graph of \( y = g(x) \), then one fully enclosed region is formed by the two graphs. What is the area of that region, rounded to the nearest hundredth?
2.28
In civil engineering, the stability of cylindrical columns under a load is often examined using the formula \( L = \frac{50T^3}{SH^2} \), where \( L \) is the load in newtons, \( T \) is the thickness of the column in centimeters, \( H \) is the height of the column in meters, and \( S \) is a safety factor. Given that \( T = 5 \) cm, \( H = 10 \) m, and \( S = 2 \), calculate the value of \( L \).
31.25
The marked price of a book was 30% less than the suggested retail price. Alice purchased the book for half the marked price at a Fiftieth Anniversary sale. What percent of the suggested retail price did Alice pay?
35\%
1. **Assume the suggested retail price (SRP) of the book**: Let the suggested retail price of the book be $P$. For simplicity, we can assume $P = 100$ USD. 2. **Calculate the marked price (MP)**: The problem states that the marked price is 30% less than the suggested retail price. Therefore, the marked price can be calculated as: \[ \text{MP} = P - 0.30P = 0.70P \] Substituting $P = 100$ USD, we get: \[ \text{MP} = 0.70 \times 100 = 70 \text{ USD} \] 3. **Calculate the price Alice paid**: Alice bought the book for half the marked price during the sale. Thus, the price Alice paid is: \[ \text{Price Alice Paid} = 0.50 \times \text{MP} = 0.50 \times 70 = 35 \text{ USD} \] 4. **Determine the percentage of the SRP that Alice paid**: To find out what percentage of the suggested retail price Alice paid, we use the formula: \[ \text{Percentage of SRP} = \left(\frac{\text{Price Alice Paid}}{P}\right) \times 100\% \] Substituting the values, we get: \[ \text{Percentage of SRP} = \left(\frac{35}{100}\right) \times 100\% = 35\% \] 5. **Conclusion**: Alice paid 35% of the suggested retail price. Thus, the answer is $\boxed{\mathrm{(C) } 35 \%}$.
Given the power function $f(x) = (m^2 - m - 1)x^{m^2 + m - 3}$ on the interval $(0, +\infty)$, determine the value of $m$ that makes it a decreasing function.
-1
Let $a \star b=ab-2$. Compute the remainder when $(((579 \star 569) \star 559) \star \cdots \star 19) \star 9$ is divided by 100.
29
Note that $$(10a+9) \star (10b+9)=(100ab+90a+90b+81)-2 \equiv 90(a+b)+79 \pmod{100}$$ so throughout our process all numbers will end in 9, so we will just track the tens digit. Then the "new operation" is $$a \dagger b \equiv -(a+b)+7 \bmod 10$$ where $a$ and $b$ track the tens digits. Now $$(a \dagger b) \dagger c \equiv (-(a+b)+7) \dagger c \equiv a+b-c \pmod{10}$$ Thus, our expression has tens digit congruent to $$-0+1-2+3-\cdots-54+55-56-57+7 \equiv 2 \bmod 10$$ making the answer 29.
What is the maximum number of colours that can be used to paint an $8 \times 8$ chessboard so that every square is painted in a single colour, and is adjacent , horizontally, vertically but not diagonally, to at least two other squares of its own colour? (A Shapovalov)
16
To find the maximum number of colors that can be used to paint an \(8 \times 8\) chessboard such that each square is adjacent (horizontally or vertically) to at least two other squares of its own color, we need to carefully analyze and construct a feasible coloring pattern under the given constraints. ### Step-by-Step Analysis: 1. **Understanding Adjacent Requirements:** - Each square should be adjacent to at least two other squares of the same color. This means for any square located at position \((i, j)\), at least two of its neighboring squares \((i \pm 1, j)\) or \((i, j \pm 1)\) should also be of the same color. 2. **Using Symmetry and Tiling Patterns:** - One possible strategy for fulfilling the adjacent requirements is using a repeating pattern or "block" that can be tiled across the chessboard. This ensures regularity and fulfills the condition uniformly. 3. **Construction of the Block:** - Consider a \(2 \times 2\) block pattern for coloring: \[ \begin{array}{cc} A & B \\ C & D \\ \end{array} \] - Each letter represents a different color. Extend this pattern across the chessboard. - Note: Since each square in this pattern is surrounded by squares of the same color in adjacent blocks as well, it ensures at least two neighbors with the same color. 4. **Determining the Total Number of Blocks in an \(8 \times 8\) Board:** - The chessboard can be completely covered by \(2 \times 2\) blocks. - There are \(4 \times 4 = 16\) such blocks in an \(8 \times 8\) chessboard. 5. **Calculation of Maximum Colors:** - Given the pattern used, each \(2 \times 2\) block uses up 4 colors for complete tiling. - However, each color is repeated efficiently across the board without violating adjacency constraints. - Thus, the number of distinct colors utilized effectively for the whole board is \(16\). Therefore, the maximum number of colors that can be used is: \[ \boxed{16} \]
In a recent survey conducted by Mary, she found that $72.4\%$ of participants believed that rats are typically blind. Among those who held this belief, $38.5\%$ mistakenly thought that all rats are albino, which is not generally true. Mary noted that 25 people had this specific misconception. Determine how many total people Mary surveyed.
90
If the operation $Z$ is defined as $a Z b = b + 10a - a^2$, what is the value of $2Z6$?
22
Given a biased coin with probabilities of $\frac{3}{4}$ for heads and $\frac{1}{4}$ for tails, and outcomes of tosses being independent, calculate the probabilities of winning Game A and Game B.
\frac{1}{4}
In a weekend volleyball tournament, Team E plays against Team F, and Team G plays against Team H on Saturday. On Sunday, the winners of Saturday's matches face off in a final, while the losers compete for the consolation prize. Furthermore, there is a mini tiebreaker challenge between the losing teams on Saturday to decide the starting server for Sunday's consolation match. One possible ranking of the team from first to fourth at the end of the tournament is EGHF. Determine the total number of possible four-team ranking sequences at the end of the tournament.
16
In triangle $DEF$, $DE = 8$, $EF = 6$, and $FD = 10$. [asy] defaultpen(1); pair D=(0,0), E=(0,6), F=(8,0); draw(D--E--F--cycle); label("\(D\)",D,SW); label("\(E\)",E,N); label("\(F\)",F,SE); [/asy] Point $Q$ is arbitrarily placed inside triangle $DEF$. What is the probability that $Q$ lies closer to $D$ than to either $E$ or $F$?
\frac{1}{4}
A point is chosen at random within a rectangle in the coordinate plane whose vertices are $(0, 0), (3030, 0), (3030, 2020),$ and $(0, 2020)$. The probability that the point is within $d$ units of a lattice point is $\tfrac{3}{4}$. Find the value of $d$ to the nearest tenth.
0.5
What is the ratio of the area of the shaded triangle to the area of the square? The square is divided into a 5x5 grid of smaller, equal-sized squares. A triangle is shaded such that it covers half of a square at the center of the grid and three full squares adjacent to this half-covered square. The vertices of the triangle touch the midpoints of the sides of the squares it covers.
\frac{7}{50}
The spikiness of a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of at least two real numbers is the sum $\sum_{i=1}^{n-1}\left|a_{i+1}-a_{i}\right|$. Suppose $x_{1}, x_{2}, \ldots, x_{9}$ are chosen uniformly and randomly from the interval $[0,1]$. Let $M$ be the largest possible value of the spikiness of a permutation of $x_{1}, x_{2}, \ldots, x_{9}$. Compute the expected value of $M$.
\frac{79}{20}
Our job is to arrange the nine numbers in a way that maximizes the spikiness. Let an element be a peak if it is higher than its neighbor(s) and a valley if it is lower than its neighbor(s). It is not hard to show that an optimal arrangement has every element either a peak or a valley (if you have some number that is neither, just move it to the end to increase spikiness). Since 9 is odd, there are two possibilities: the end points are either both peaks or both valleys. Sort the numbers from least to greatest: $x_{1}, \ldots, x_{9}$. If we arrange them in such a way that it starts and ends with peaks, the factor of $x_{i}$ added to the final result will be $[-2,-2,-2,-2,1,1,2,2,2]$, respectively. If we choose the other way (starting and ending with valleys), we get $[-2,-2,-2,-1,-1,2,2,2,2]$. Notice that both cases have a base value of $[-2,-2,-2,-1,0,1,2,2,2]$, but then we add on $\max \left(x_{6}-\right.$ $\left.x_{5}, x_{5}-x_{4}\right)$. Since the expected value of $x_{i}$ is $\frac{i}{10}$, our answer is $-\frac{2}{10}(1+2+3)-\frac{4}{10}+\frac{6}{10}+\frac{2}{10}(7+8+$ $9)+\mathbb{E}\left(\max \left(x_{6}-x_{5}, x_{5}-x_{4}\right)\right)$. This last term actually has value $\frac{3}{4} \mathbb{E}\left(x_{6}-x_{4}\right)=\frac{3}{4} \cdot \frac{2}{10}$. This is because if we fix all values except $x_{5}$, then $x_{5}$ is uniformly distributed in $\left[x_{4}, x_{6}\right]$. Geometric probability tells us that the distance from $x_{5}$ to its farthest neighbor is $\frac{3}{4}$ to total distance betwen its two neighbors $\left(x_{6}-x_{4}\right)$. We add this all up to get $\frac{79}{20}$.
There are $168$ primes below $1000$ . Then sum of all primes below $1000$ is,
76127
One of the angles in a triangle is $120^{\circ}$, and the lengths of the sides form an arithmetic progression. Find the ratio of the lengths of the sides of the triangle.
3 : 5 : 7
180 grams of 920 purity gold was alloyed with 100 grams of 752 purity gold. What is the purity of the resulting alloy?
860
How many subsets containing three different numbers can be selected from the set \(\{ 89,95,99,132, 166,173 \}\) so that the sum of the three numbers is even?
12
1. **Identify the parity of each number in the set**: The set given is $\{89, 95, 99, 132, 166, 173\}$. - Odd numbers: $89, 95, 99, 173$ - Even numbers: $132, 166$ 2. **Understand the condition for the sum to be even**: The sum of three numbers can be even if we choose either: - Three even numbers, or - Two odd numbers and one even number. 3. **Check the possibility of choosing three even numbers**: Since there are only two even numbers in the set ($132$ and $166$), it is impossible to choose three even numbers. 4. **Calculate the number of ways to choose two odd numbers and one even number**: - **Choosing two odd numbers**: There are $4$ odd numbers in the set. The number of ways to choose $2$ odd numbers from $4$ is given by the combination formula $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Here, $n=4$ and $k=2$: \[ \binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3}{2 \times 1} = 6 \] - **Choosing one even number**: There are $2$ even numbers in the set. The number of ways to choose $1$ even number from $2$ is: \[ \binom{2}{1} = \frac{2!}{1!(2-1)!} = 2 \] 5. **Calculate the total number of subsets**: Multiply the number of ways to choose two odd numbers by the number of ways to choose one even number: \[ 6 \text{ (ways to choose odd numbers)} \times 2 \text{ (ways to choose an even number)} = 12 \] 6. **Conclusion**: There are $12$ subsets containing three different numbers such that their sum is even. Thus, the answer is $\boxed{D}$.
Given the parametric equation of line $l$ is $\begin{cases} & x=1+3t \\ & y=2-4t \end{cases}$ (where $t$ is the parameter), calculate the cosine of the inclination angle of line $l$.
-\frac{3}{5}
Maurice travels to work either by his own car (and then due to traffic jams, he is late in half the cases) or by subway (and then he is late only one out of four times). If on a given day Maurice arrives at work on time, he always uses the same mode of transportation the next day as he did the day before. If he is late for work, he changes his mode of transportation the next day. Given all this, how likely is it that Maurice will be late for work on his 467th trip?
2/3
An equilateral triangle with a side length of 1 is cut along a line parallel to one of its sides, resulting in a trapezoid. Let $S = \frac{\text{(perimeter of the trapezoid)}^2}{\text{area of the trapezoid}}$. Find the minimum value of $S$.
\frac{32\sqrt{3}}{3}
Given that the sum of the first 10 terms of a geometric sequence $\{a_n\}$ is 32 and the sum of the first 20 terms is 56, find the sum of the first 30 terms.
74
Points $A,B,C$ and $D$ lie on a line, in that order, with $AB = CD$ and $BC = 12$. Point $E$ is not on the line, and $BE = CE = 10$. The perimeter of $\triangle AED$ is twice the perimeter of $\triangle BEC$. Find $AB$.
9
1. **Setup and Diagram**: Points $A, B, C, D$ are collinear with $AB = CD = x$ and $BC = 12$. Point $E$ is not on the line, and $BE = CE = 10$. We need to find $x$ given that the perimeter of $\triangle AED$ is twice the perimeter of $\triangle BEC$. 2. **Properties of $\triangle BEC$**: Since $BE = CE$, $\triangle BEC$ is isosceles. Draw the altitude from $E$ to $BC$, meeting $BC$ at point $M$. Since $M$ is the midpoint of $BC$, $BM = MC = \frac{12}{2} = 6$. 3. **Finding $EM$ using the Pythagorean Theorem**: \[ EM = \sqrt{BE^2 - BM^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8. \] 4. **Using the Pythagorean Theorem in $\triangle EMA$**: \[ AE = \sqrt{AM^2 + EM^2} = \sqrt{(x+6)^2 + 8^2} = \sqrt{x^2 + 12x + 36 + 64} = \sqrt{x^2 + 12x + 100}. \] By symmetry, $DE = AE = \sqrt{x^2 + 12x + 100}$. 5. **Perimeter Relations**: - Perimeter of $\triangle BEC = BE + EC + BC = 10 + 10 + 12 = 32$. - Perimeter of $\triangle AED = AE + ED + AD = 2\sqrt{x^2 + 12x + 100} + 2x + 12$. 6. **Setting up the Equation**: Given that the perimeter of $\triangle AED$ is twice that of $\triangle BEC$, we have: \[ 2\sqrt{x^2 + 12x + 100} + 2x + 12 = 2 \times 32. \] Simplifying, we get: \[ 2\sqrt{x^2 + 12x + 100} + 2x + 12 = 64. \] \[ 2\sqrt{x^2 + 12x + 100} = 52 - 2x. \] \[ \sqrt{x^2 + 12x + 100} = 26 - x. \] 7. **Squaring Both Sides**: \[ x^2 + 12x + 100 = (26 - x)^2. \] \[ x^2 + 12x + 100 = 676 - 52x + x^2. \] \[ 64x = 576. \] \[ x = \frac{576}{64} = 9. \] 8. **Conclusion**: The value of $AB = x = 9$. Therefore, the correct answer is $\boxed{\text{(D)}\ 9}$.
We write the following equation: \((x-1) \ldots (x-2020) = (x-1) \ldots (x-2020)\). What is the minimal number of factors that need to be erased so that there are no real solutions?
1010
Mark's cousin has $10$ identical stickers and $5$ identical sheets of paper. How many ways are there for him to distribute all of the stickers on the sheets of paper, given that each sheet must have at least one sticker, and only the number of stickers on each sheet matters?
126
Given the function $y = \lg(-x^2 + x + 2)$ with domain $A$, find the range $B$ for the exponential function $y = a^x$ $(a>0$ and $a \neq 1)$ where $x \in A$. 1. If $a=2$, determine $A \cup B$; 2. If $A \cap B = (\frac{1}{2}, 2)$, find the value of $a$.
a = 2
Given the function $f(x)=4-x^{2}+a\ln x$, if $f(x)\leqslant 3$ for all $x > 0$, determine the range of the real number $a$.
[2]
Given $f(x)= \frac{1}{2^{x}+ \sqrt {2}}$, use the method for deriving the sum of the first $n$ terms of an arithmetic sequence to find the value of $f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)$.
3 \sqrt {2}
Given $\begin{vmatrix} p & q \\ r & s \end{vmatrix} = 6,$ find \[\begin{vmatrix} p & 9p + 4q \\ r & 9r + 4s \end{vmatrix}.\]
24
Let $\mathcal{P}_1$ and $\mathcal{P}_2$ be two parabolas with distinct directrices $\ell_1$ and $\ell_2$ and distinct foci $F_1$ and $F_2$ respectively. It is known that $F_1F_2||\ell_1||\ell_2$ , $F_1$ lies on $\mathcal{P}_2$ , and $F_2$ lies on $\mathcal{P}_1$ . The two parabolas intersect at distinct points $A$ and $B$ . Given that $F_1F_2=1$ , the value of $AB^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$ . Find $100m+n$ . [i]Proposed by Yannick Yao
1504
There are 5 students who signed up to participate in a two-day volunteer activity at the summer district science museum. Each day, two students are needed for the activity. The probability that exactly 1 person will participate in the volunteer activity for two consecutive days is ______.
\frac{3}{5}
A banquet has invited 44 guests. There are 15 identical square tables, each of which can seat 1 person per side. By appropriately combining the square tables (to form rectangular or square tables), ensure that all guests are seated with no empty seats. What is the minimum number of tables in the final arrangement?
11
Eighty percent of adults drink coffee and seventy percent drink tea. What is the smallest possible percent of adults who drink both coffee and tea?
50\%
Circles with centers $P, Q$ and $R$, having radii $1, 2$ and $3$, respectively, lie on the same side of line $l$ and are tangent to $l$ at $P', Q'$ and $R'$, respectively, with $Q'$ between $P'$ and $R'$. The circle with center $Q$ is externally tangent to each of the other two circles. What is the area of triangle $PQR$?
\sqrt{6}-\sqrt{2}
To solve this problem, we need to determine the positions of the centers $P$, $Q$, and $R$ of the circles relative to each other and then calculate the area of triangle $PQR$. 1. **Positioning the Circles:** - Since the circles are tangent to line $l$ and each other, we can determine the distances between the centers using the radii. - The distance between $P$ and $Q$ is $1 + 2 = 3$. - The distance between $Q$ and $R$ is $2 + 3 = 5$. 2. **Coordinates of Centers:** - Assume $Q$ is at the origin $(0, 2)$ (since its radius is $2$ and it is tangent to line $l$). - Then $P$ would be at $(-3, 1)$ and $R$ would be at $(5, 3)$. 3. **Calculating the Area of Triangle $PQR$:** - Use the determinant formula for the area of a triangle given vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right| \] - Substituting the coordinates of $P$, $Q$, and $R$: \[ \text{Area} = \frac{1}{2} \left| (-3)(2-3) + 0(3-1) + 5(1-2) \right| \] \[ = \frac{1}{2} \left| -3 + 0 - 5 \right| = \frac{1}{2} \left| -8 \right| = 4 \] - However, this calculation does not match the provided options, indicating a possible error in the positioning or calculation. Let's re-evaluate the distances and positioning. 4. **Re-evaluating Distances:** - The distance between $P$ and $Q$ is $3$, and between $Q$ and $R$ is $5$. We need to ensure these distances are correct considering the tangency conditions and the radii. - The correct coordinates should maintain these distances: - $P$ at $(-\sqrt{2}, 1)$, $Q$ at $(0, 2)$, and $R$ at $(\sqrt{6}, 3)$. 5. **Recalculating the Area of Triangle $PQR$:** - Using the corrected coordinates: \[ \text{Area} = \frac{1}{2} \left| (-\sqrt{2})(2-3) + 0(3-1) + \sqrt{6}(1-2) \right| \] \[ = \frac{1}{2} \left| \sqrt{2} - \sqrt{6} \right| = \frac{1}{2} \left| \sqrt{6} - \sqrt{2} \right| \] - This matches option $\textbf{(D)}$. Thus, the area of triangle $PQR$ is $\boxed{\textbf{(D)} \sqrt{6}-\sqrt{2}}$.
Let point O be a point inside triangle ABC with an area of 6, and it satisfies $$\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = \overrightarrow {0}$$, then the area of triangle AOC is \_\_\_\_\_\_.
\frac {3}{2}
To open the safe, you need to enter a code — a number consisting of seven digits: twos and threes. The safe will open if there are more twos than threes, and the code is divisible by both 3 and 4. Create a code that opens the safe.
2222232
The numbers \(a, b, c, d\) belong to the interval \([-6, 6]\). Find the maximum value of the expression \(a + 2b + c + 2d - ab - bc - cd - da\).
156
A book has a total of 100 pages, numbered sequentially from 1, 2, 3, 4…100. The digit “2” appears in the page numbers a total of \_\_\_\_\_\_ times.
20
Let \( P(x) = x^{4} + a x^{3} + b x^{2} + c x + d \), where \( a, b, c, \) and \( d \) are real coefficients. Given that \[ P(1) = 7, \quad P(2) = 52, \quad P(3) = 97, \] find the value of \(\frac{P(9) + P(-5)}{4}\).
1202
With the popularity of cars, the "driver's license" has become one of the essential documents for modern people. If someone signs up for a driver's license exam, they need to pass four subjects to successfully obtain the license, with subject two being the field test. In each registration, each student has 5 chances to take the subject two exam (if they pass any of the 5 exams, they can proceed to the next subject; if they fail all 5 times, they need to re-register). The first 2 attempts for the subject two exam are free, and if the first 2 attempts are unsuccessful, a re-examination fee of $200 is required for each subsequent attempt. Based on several years of data, a driving school has concluded that the probability of passing the subject two exam for male students is $\frac{3}{4}$ each time, and for female students is $\frac{2}{3}$ each time. Now, a married couple from this driving school has simultaneously signed up for the subject two exam. If each person's chances of passing the subject two exam are independent, their principle for taking the subject two exam is to pass the exam or exhaust all chances. $(Ⅰ)$ Find the probability that this couple will pass the subject two exam in this registration and neither of them will need to pay the re-examination fee. $(Ⅱ)$ Find the probability that this couple will pass the subject two exam in this registration and the total re-examination fees they incur will be $200.
\frac{1}{9}
Let $a$, $b$, $c$, $d$, and $e$ be positive integers with $a+b+c+d+e=2010$ and let $M$ be the largest of the sum $a+b$, $b+c$, $c+d$ and $d+e$. What is the smallest possible value of $M$?
671
A volleyball net is in the shape of a rectangle with dimensions of $50 \times 600$ cells. What is the maximum number of strings that can be cut so that the net does not fall apart into pieces?
30000
An integer $N$ is selected at random in the range $1 \leq N \leq 2030$. Calculate the probability that the remainder when $N^{12}$ is divided by $7$ is $1$.
\frac{6}{7}
In the Cartesian coordinate system, if the terminal side of angle α passes through point P(sin (5π/3), cos (5π/3)), evaluate sin(π+α).
-\frac{1}{2}
For the polynomial \[ p(x) = 985 x^{2021} + 211 x^{2020} - 211, \] let its 2021 complex roots be \( x_1, x_2, \cdots, x_{2021} \). Calculate \[ \sum_{k=1}^{2021} \frac{1}{x_{k}^{2} + 1} = \]
2021
Find the number of diagonals of a polygon with 150 sides and determine if 9900 represents half of this diagonal count.
11025
In the triangular pyramid $A-BCD$, where $AB=AC=BD=CD=BC=4$, the plane $\alpha$ passes through the midpoint $E$ of $AC$ and is perpendicular to $BC$, calculate the maximum value of the area of the section cut by plane $\alpha$.
\frac{3}{2}
Given that the terminal side of angle θ passes through point P(-x, -6) and $$cosθ=- \frac {5}{13}$$, find the value of $$tan(θ+ \frac {π}{4})$$.
-\frac {17}{7}
How many solutions does the equation $\tan x = \tan (\tan x + \frac{\pi}{4})$ have in the interval $0 \leq x \leq \tan^{-1} 1884$?
600
There are $n$ pawns on $n$ distinct squares of a $19\times 19$ chessboard. In each move, all the pawns are simultaneously moved to a neighboring square (horizontally or vertically) so that no two are moved onto the same square. No pawn can be moved along the same line in two successive moves. What is largest number of pawns can a player place on the board (being able to arrange them freely) so as to be able to continue the game indefinitely?
361
A number is considered a visible factor number if it is divisible by each of its non-zero digits. For example, 204 is divisible by 2 and 4 and is therefore a visible factor number. Determine how many visible factor numbers exist from 200 to 250, inclusive.
16
On the radius \( AO \) of a circle centered at \( O \), a point \( M \) is chosen. On one side of \( AO \), points \( B \) and \( C \) are chosen on the circle such that \( \angle AMB = \angle OMC = \alpha \). Find the length of \( BC \) if the radius of the circle is 10 and \( \cos \alpha = \frac{4}{5} \).
16
Using the method of base prime representation, where the place of each digit represents an exponent in the prime factorization (starting with the smallest prime on the right), convert the number $196$ into base prime.
2002
A reservoir is equipped with an inlet tap A and outlet taps B and C. It is known that opening taps A and B together for 8 hours or opening taps A, B, and C together for a whole day can fill an empty reservoir, and opening taps B and C together for 8 hours can empty a full reservoir. Determine how many hours it would take to fill the reservoir with only tap A open, how many hours it would take to empty the reservoir with only tap B open, and how many hours it would take to empty the reservoir with only tap C open.
12
How many ordered pairs $(a, b)$ of positive integers satisfy $a^{2}+b^{2}=50$?
3
Since $b$ is a positive integer, then $b^{2} \geq 1$, and so $a^{2} \leq 49$, which gives $1 \leq a \leq 7$, since $a$ is a positive integer. If $a=7$, then $b^{2}=50-7^{2}=1$, so $b=1$. If $a=6$, then $b^{2}=50-6^{2}=14$, which is not possible since $b$ is an integer. If $a=5$, then $b^{2}=50-5^{2}=25$, so $b=5$. If $a=4$, then $b^{2}=50-4^{2}=34$, which is not possible. If $a=3$, then $b^{2}=50-3^{2}=41$, which is not possible. If $a=2$, then $b^{2}=50-2^{2}=46$, which is not possible. If $a=1$, then $b^{2}=50-1^{2}=49$, so $b=7$. Therefore, there are 3 pairs $(a, b)$ that satisfy the equation, namely $(7,1),(5,5),(1,7)$.
The sides of triangle $DEF$ are in the ratio of $3:4:5$. Segment $EG$ is the angle bisector drawn to the shortest side, dividing it into segments $DG$ and $GE$. What is the length, in inches, of the longer subsegment of side $DE$ if the length of side $DE$ is $12$ inches? Express your answer as a common fraction.
\frac{48}{7}
Xiao Ming's family has three hens. The first hen lays one egg every day, the second hen lays one egg every two days, and the third hen lays one egg every three days. Given that all three hens laid eggs on January 1st, how many eggs did these three hens lay in total in the 31 days of January?
56
The numbers in the sequence $101$, $104$, $109$, $116$,$\ldots$ are of the form $a_n=100+n^2$, where $n=1,2,3,\ldots$ For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n+1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.
401
We know that $a_n = 100+n^2$ and $a_{n+1} = 100+(n+1)^2 = 100+ n^2+2n+1$. Since we want to find the GCD of $a_n$ and $a_{n+1}$, we can use the Euclidean algorithm: $a_{n+1}-a_n = 2n+1$ Now, the question is to find the GCD of $2n+1$ and $100+n^2$. We subtract $2n+1$ 100 times from $100+n^2$. This leaves us with $n^2-200n$. We want this to equal 0, so solving for $n$ gives us $n=200$. The last remainder is 0, thus $200*2+1 = \boxed{401}$ is our GCD.
Given $f(x)= \sqrt {3}\sin \dfrac {x}{4}\cos \dfrac {x}{4}+ \cos ^{2} \dfrac {x}{4}+ \dfrac {1}{2}$. (1) Find the period of $f(x)$; (2) In $\triangle ABC$, sides $a$, $b$, and $c$ correspond to angles $A$, $B$, and $C$ respectively, and satisfy $(2a-c)\cos B=b\cos C$, find the value of $f(B)$.
\dfrac{\sqrt{3}}{2} + 1
The polynomial \( x^{103} + Cx + D \) is divisible by \( x^2 + 2x + 1 \) for some real numbers \( C \) and \( D \). Find \( C + D \).
-1
Let $S$ be the set of nonzero real numbers. Let $f : S \to \mathbb{R}$ be a function such that (i) $f(1) = 1,$ (ii) $f \left( \frac{1}{x + y} \right) = f \left( \frac{1}{x} \right) + f \left( \frac{1}{y} \right)$ for all $x,$ $y \in S$ such that $x + y \in S,$ and (iii) $(x + y) f(x + y) = xyf(x)f(y)$ for all $x,$ $y \in S$ such that $x + y \in S.$ Find the number of possible functions $f(x).$
1
If $f(x)$ is a monic quartic polynomial such that $f(-1)=-1$, $f(2)=-4$, $f(-3)=-9$, and $f(4)=-16$, find $f(1)$.
23
Jenna is at a fair with four friends. They all want to ride the roller coaster, but only three people can fit in a car. How many different groups of three can the five of them make?
10
Let \(A B C D E\) be a square pyramid of height \(\frac{1}{2}\) with a square base \(A B C D\) of side length \(A B = 12\) (so \(E\) is the vertex of the pyramid, and the foot of the altitude from \(E\) to \(A B C D\) is the center of square \(A B C D\)). The faces \(A D E\) and \(C D E\) meet at an acute angle of measure \(\alpha\) (so that \(0^{\circ}<\alpha<90^{\circ}\)). Find \(\tan \alpha\).
\frac{17}{144}
How many Pythagorean triangles are there in which one of the legs is equal to 2013? (A Pythagorean triangle is a right triangle with integer sides. Identical triangles count as one.).
13
A bag contains nine blue marbles, ten ugly marbles, and one special marble. Ryan picks marbles randomly from this bag with replacement until he draws the special marble. He notices that none of the marbles he drew were ugly. Given this information, what is the expected value of the number of total marbles he drew?
\frac{20}{11}
The probability of drawing $k$ marbles is the probability of drawing $k-1$ blue marbles and then the special marble, which is $p_{k}=\left(\frac{9}{20}\right)^{k-1} \times \frac{1}{20}$. The probability of drawing no ugly marbles is therefore $\sum_{k=1}^{\infty} p_{k}=\frac{1}{11}$. Then given that no ugly marbles were drawn, the probability that $k$ marbles were drawn is $11 p_{k}$. The expected number of marbles Ryan drew is $$\sum_{k=1}^{\infty} k\left(11 p_{k}\right)=\frac{11}{20} \sum_{k=1}^{\infty} k\left(\frac{9}{20}\right)^{k-1}=\frac{11}{20} \times \frac{400}{121}=\frac{20}{11}$$ (To compute the sum in the last step, let $S=\sum_{k=1}^{\infty} k\left(\frac{9}{20}\right)^{k-1}$ and note that $\frac{9}{20} S=S-\sum_{k=1}^{\infty}\left(\frac{9}{20}\right)^{k-1}=$ $\left.S-\frac{20}{11}\right)$.
Given Jane lists the whole numbers $1$ through $50$ once and Tom copies Jane's numbers, replacing each occurrence of the digit $3$ by the digit $2$, calculate how much larger Jane's sum is than Tom's sum.
105
Given that $A$, $B$, and $C$ are the three interior angles of $\triangle ABC$, $a$, $b$, and $c$ are the three sides, $a=2$, and $\cos C=-\frac{1}{4}$. $(1)$ If $\sin A=2\sin B$, find $b$ and $c$; $(2)$ If $\cos (A-\frac{π}{4})=\frac{4}{5}$, find $c$.
\frac{5\sqrt{30}}{2}
I had been planning to work for 20 hours a week for 12 weeks this summer to earn $\$3000$ to buy a used car. Unfortunately, I got sick for the first two weeks of the summer and didn't work any hours. How many hours a week will I have to work for the rest of the summer if I still want to buy the car?
24
If $|x| + x + y = 14$ and $x + |y| - y = 16,$ find $x + y.$
-2
The number $n$ is a four-digit positive integer and is the product of three distinct prime factors $x$, $y$ and $10y+x$, where $x$ and $y$ are each less than 10. What is the largest possible value of $n$?
1533
Find the largest possible number in decimal notation where all the digits are different, and the sum of its digits is 37.
976543210
Given that $x+y=12$, $xy=9$, and $x < y$, find the value of $\frac {x^{ \frac {1}{2}}-y^{ \frac {1}{2}}}{x^{ \frac {1}{2}}+y^{ \frac {1}{2}}}=$ ___.
- \frac { \sqrt {3}}{3}
Find the least positive integer \( x \) that satisfies both \( x + 7219 \equiv 5305 \pmod{17} \) and \( x \equiv 4 \pmod{7} \).
109
Let $C$ be the circle with equation $x^2+2y-9=-y^2+18x+9$. If $(a,b)$ is the center of $C$ and $r$ is its radius, what is the value of $a+b+r$?
18
Determine the area enclosed by the curves \( y = \sin x \) and \( y = \left(\frac{4}{\pi}\right)^{2} \sin \left(\frac{\pi}{4}\right) x^{2} \) (the latter is a quadratic function).
1 - \frac{\sqrt{2}}{2}\left(1 + \frac{\pi}{12}\right)
Compute $\sqrt[4]{256000000}$.
40\sqrt{10}
In rectangle $PQRS$, $PS=6$ and $SR=3$. Point $U$ is on $QR$ with $QU=2$. Point $T$ is on $PS$ with $\angle TUR=90^{\circ}$. What is the length of $TR$?
5
Since $PQRS$ is a rectangle, then $QR=PS=6$. Therefore, $UR=QR-QU=6-2=4$. Since $PQRS$ is a rectangle and $TU$ is perpendicular to $QR$, then $TU$ is parallel to and equal to $SR$, so $TU=3$. By the Pythagorean Theorem, since $TR>0$, then $TR=\sqrt{TU^{2}+UR^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$. Thus, $TR=5$.
Compute the remainder when ${2007 \choose 0} + {2007 \choose 3} + \cdots + {2007 \choose 2007}$ is divided by 1000.
42
Seven frogs are sitting in a row. They come in four colors: two green, two red, two yellow, and one blue. Green frogs refuse to sit next to red frogs, and yellow frogs refuse to sit next to blue frogs. In how many ways can the frogs be positioned respecting these restrictions?
16
A fenced, rectangular field measures $24$ meters by $52$ meters. An agricultural researcher has 1994 meters of fence that can be used for internal fencing to partition the field into congruent, square test plots. The entire field must be partitioned, and the sides of the squares must be parallel to the edges of the field. What is the largest number of square test plots into which the field can be partitioned using all or some of the 1994 meters of fence?
702
Suppose a real number \(x>1\) satisfies \(\log _{2}\left(\log _{4} x\right)+\log _{4}\left(\log _{16} x\right)+\log _{16}\left(\log _{2} x\right)=0\). Compute \(\log _{2}\left(\log _{16} x\right)+\log _{16}\left(\log _{4} x\right)+\log _{4}\left(\log _{2} x\right)\).
-\frac{1}{4}
Let \(A\) and \(B\) be these sums, respectively. Then \(B-A =\log _{2}\left(\frac{\log _{16} x}{\log _{4} x}\right)+\log _{4}\left(\frac{\log _{2} x}{\log _{16} x}\right)+\log _{16}\left(\frac{\log _{4} x}{\log _{2} x}\right) =\log _{2}\left(\log _{16} 4\right)+\log _{4}\left(\log _{2} 16\right)+\log _{16}\left(\log _{4} 2\right) =\log _{2}\left(\frac{1}{2}\right)+\log _{4} 4+\log _{16}\left(\frac{1}{2}\right) =(-1)+1+\left(-\frac{1}{4}\right) =-\frac{1}{4}\). Since \(A=0\), we have the answer \(B=-\frac{1}{4}\).
Given that $x$ is a multiple of $3456$, what is the greatest common divisor of $f(x)=(5x+3)(11x+2)(14x+7)(3x+8)$ and $x$?
48
If $y=f(x)$ has an inverse function $y=f^{-1}(x)$, and $y=f(x+2)$ and $y=f^{-1}(x-1)$ are inverse functions of each other, then $f^{-1}(2007)-f^{-1}(1)=$ .
4012
Billy Bones has two coins — one gold and one silver. One of these coins is fair, while the other is biased. It is unknown which coin is biased but it is known that the biased coin lands heads with a probability of $p=0.6$. Billy Bones tossed the gold coin and it landed heads immediately. Then, he started tossing the silver coin, and it landed heads only on the second toss. Find the probability that the gold coin is the biased one.
5/9